首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Knowledge of the degradation state of evidentiary DNA samples would allow selection of the appropriate analysis method (standard short tandem repeats [STRs] vs. mini STRs vs. mtDNA). This article describes the development of a Plexor® technology/real‐time PCR DNA degradation detection assay, which uses a common forward primer and two reverse primers (different fluorophores) to generate two Alu amplicons (63 and 246 bp). This very sensitive assay was optimized for reaction volume, cycle number, anneal/extend time, and temperature. Using DNA samples degraded with DNaseI, the ratio of the concentration of the short amplicon to the concentration of the long amplicon (degradation ratio) was increased versus time of degradation. Experiments were performed on a variety of environmentally degraded samples (age, sunlight, heat) and with seven commonly encountered forensic inhibitors. The degradation ratio was found to predict the observed loss of larger STR loci seen in the analysis of comprised samples.  相似文献   

2.
To develop a cost‐effective technique for single‐nucleotide polymorphism (SNP) genotyping and improve the efficiency to analyze degraded DNA, we have established a novel multiplex system including 21‐locus autosomal SNPs and amelogenin locus, which was based on allele‐specific amplification (ASA) and universal reporter primers (URP). The target amplicons for each of the 21 SNPs arranged from 63 base pair (bp) to 192 bp. The system was tested in 539 samples from three ethnic groups (Han, Mongolian, and Zhuang population) in China, and the total power of discrimination (TPD) and cumulative probability of exclusion (CPE) were more than 0.99999999 and 0.98, respectively. The system was further validated with forensic samples and full profiles could be achieved from degraded DNA and 63 case‐type samples. In summary, the multiplex system offers an effective technique for individual identification of forensic samples and is much more efficient in the analysis of degraded DNA compared with standard STR typing.  相似文献   

3.
Six multiplex PCR systems using single‐base extension reactions to analyze 46 mitochondrial DNA (mtDNA)‐coding region single nucleotide polymorphisms (SNPs) that define 42 haplogroups, that is, 24 major mtDNA haplogroups and 18 subclades, were devised. To improve the usefulness of the established systems for the analysis of degraded DNA samples, novel primers to render amplicons with sizes <150 bp were designed. By applying these systems to 214 Japanese individuals, 24 different haplogroups (power of discrimination = 93.4%) were found. To assess the effectiveness of our systems in grouping degraded DNA, an ancient bone sample of a Jomon skeleton was analyzed and then classified as haplogroup N9b. We conclude that the present systems are powerful screening tools for major haplogroups of mtDNA in addition to the prevalent subhaplogroups in the Japanese population and that these systems are capable of analyzing highly degraded DNA samples in forensic studies.  相似文献   

4.
We describe two short amplicon autosomal short tandem repeat (miniSTR) quadruplex systems for eight loci D1S1171, D2S1242, D3S1545, D4S2366, D12S391, D16S3253, D20S161, and D21S1437, unlinked from the combined DNA index system (non-CODIS) loci, using newly designed primer sets. The results of an assay of 411 Japanese individuals showed that polymerase chain reaction (PCR) products within the eight loci were less than 150bp in size, without the seven additional bases for adenylation. The frequency distributions in the loci showed no deviations from Hardy-Weinberg equilibrium expectations. The accumulated power of discrimination and power of exclusion for the eight loci were 0.9999999991 and 0.998, respectively. For assay of highly degraded DNA, including artificially degraded samples and the degraded forensic casework samples assessed with the present miniSTR quadruplex systems, the systems proved quite effective in analyzing degraded DNA.  相似文献   

5.
A new set of multiplexed PCR primers has been applied to the analysis of human skeletal remains to determine their efficacy in analyzing degraded DNA. These primer sets, known as Miniplexes, produce shorter amplicons (50-280 base pairs (bp)) than standard short tandem repeat (STR) kits, but still utilize the 13 CODIS STR loci, providing results that are searchable on national DNA databases. In this study, a set of 31 different human remains were exposed to a variety of environmental conditions, extracted, and amplified with commercial and Miniplex DNA typing kits. The amplification efficiency of the Miniplex sets was then compared with the Promega PowerPlex 16 system. Sixty-four percent of the samples generated full profiles when amplified with the Miniplexes, while only 16% of the samples generated full profiles with the Powerplex 16 kit. Complete profiles were obtained for 11 of the 12 Miniplex loci with amplicon sizes less than 200 bp. These data suggest smaller PCR amplicons may provide a useful alternative to mitochondrial DNA for anthropological and forensic analysis of degraded DNA from human skeletal remains.  相似文献   

6.
It is common in forensic casework to encounter highly degraded DNA samples from a variety of sources. In this category bone and teeth samples are often the principal source of evidential material for criminal investigations or identification of long-deceased individuals. In these circumstances standard STRs are prone to fail due to their long amplicon sizes (since DNA becomes progressively more fragmented as it degrades). To successfully resolve such cases alternative markers can be used and until recently the only other tool available was mitochondrial DNA, which despite being more resistant to degradation, is much less informative. A rapidly developing approach to analyzing degraded DNA is the typing of loci from short-amplicon PCR products based on markers such as mini-STRs and autosomal SNPs. We have performed an analysis of several cases with naturally degraded DNA using established STRs plus mini-STRs and autosomal SNPs in order to make an objective comparison of the performance of each method using challenging DNA. The main aim was to establish the benefits and drawbacks of each marker set to help the practitioner choose the DNA analysis method most suited to the circumstances of each case.  相似文献   

7.
Analysis of short tandem repeat (STR) markers currently represents the most useful instrument in the field of forensic genetics. The problem with forensic material is the degradation of the sample material. In recent years, several papers have demonstrated that short amplicon STR (miniSTR) represents one of the most useful tools for analyzing degraded DNA samples.In the present study, we attempted to develop a short amplicon STR multiplex system (autosomal and y-chromosomal) for analyzing degraded DNA using some newly designed primer sets for a multiplex polymerase chain reaction (PCR) systems for typing.An assay of degraded DNA samples using the designed multiplex systems, including artificially degraded samples and degraded forensic casework samples, proved remarkably effective. Comparing the multiplex with commercial kits, first results show a well success rate.  相似文献   

8.
Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60‐year‐old and 400–500‐year‐old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis.  相似文献   

9.
Abstract: In this project, real time polymerase chain reaction (PCR) was utilized to study the mechanism of PCR inhibition through examination of the effect of amplicon length, melting temperature, and sequence. Specifically designed primers with three different amplicon lengths and three different melting temperatures were used to target a single homozygous allele in the HUMTH01 locus. The effect on amplification efficiency for each primer pair was determined by adding different concentrations of various PCR inhibitors to the reaction mixture. The results show that a variety of inhibition mechanisms can occur during the PCR process depending on the type of co‐extracted inhibitor. These include Taq inhibition, DNA template binding, and effects on reaction efficiency. In addition, some inhibitors appear to affect the reaction in more than one manner. Overall we find that amplicon size and melting temperature are important in some inhibition mechanisms and not in others and the key issue in understanding PCR inhibition is determining the identity of the interfering substance.  相似文献   

10.
The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/microL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories.  相似文献   

11.
Abstract: A method is described for the quantitation of total human and male DNA. Q‐TAT utilizes end‐point, multiplex polymerase chain reaction (PCR) amplification of the amelogenin and SRY loci to quantify DNA and incorporates a cloned nonhuman template to detect PCR inhibition. Standard curves of fluorescence from amelogenin or SRY amplicons were generated from amplification of known amounts of NIST traceable SRM‐female or SRM‐male DNA. Curves showed good linearity up to 500 pg of SRM‐template (R2 > 0.99) and reliably estimated total and male DNA content in casework samples. The nonhuman pRLnull template included in each PCR was a sensitive indicator of known PCR inhibitors including EDTA, hemin, blue denim dye, and humic acid. Finally, the SRY amplicon was a sensitive indicator of male DNA and, in mixtures, could reliably estimate male DNA present in an excess of female DNA. The Q‐TAT multiplex is a reliable quantitation method for forensic DNA typing.  相似文献   

12.
In forensic genetic analyses, mixtures of various biological materials are common samples. Micromanipulation, which is performed based on differences in cellular morphology, is an effective method for the isolation of cells from mixtures. In this study, mucosal cell was isolated from somatic cellular mixtures (blood and saliva) based on micromanipulation and a low volume‐PCR (LV‐PCR) platform. One hundred and twenty‐six parallel LV‐PCR processes were performed using an Identifiler® kit, with 107 reactions yielding single‐source DNA profiles. Among them, 54 full profiles (50%) and 37 partial profiles (13–15 loci) were obtained. Based on the above method, we obtained a single‐source DNA profile from a cigarette butt contaminated by two victims’ blood in a murder case. The generated genotype was used to query a DNA database, and a perfect match was found.  相似文献   

13.
Y-chromosome short tandem repeat (Y-STR) markers are being used as potential tools for distinguishing low levels of male DNA in the presence of excess female DNA as is present in many sexual assault samples. Usually single copy Y-STR loci produce a single amplicon in single source samples, and thus the observation of multiple peaks at such a locus could suggest to an analyst that a mixture of more than one male contributor is present in the tested sample. However, many regions of the Y-chromosome are duplicated or even triplicated in some individuals and this fact can thus complicate potential mixture interpretation. Reasons for the presence of duplications at multiple loci within a single sample are explored in the context of Y-STR marker location along the chromosome. True male-male mixtures commonly exhibit more than one locus-specific PCR product across multiple Y-STR loci that are not adjacent to one another on the Y-chromosome. In addition, duplicated loci typically possess alleles that differ by only a single repeat unit and possess similar peak heights.  相似文献   

14.
Abstract: We have developed a concept to enable the analyzing of degraded stains with limited DNA template quantity. Therefore we have constructed a short tandem repeat (STR) multiplex including the German DNA database systems (Q8). The amplicon lengths are smaller than 280 bp. For the validation of Q8 over 50 degraded samples were investigated. Amplifications were performed with “low copy number” PCR, the number of PCR cycles was increased to 33 and the reaction volume was decreased to 12.5 μL. Compared with the MPX2 and Nonaplex kit, the average success rate was increased using the Q8 kit by approximately 20% and 30%, respectively. The efficiency of a sensitive STR multiplex with reduced amplicon lengths was confirmed in comparing the success rates of Q8 for typing degraded samples and samples with limited amount of DNA template while partial profiles were observed with the majority of the samples using commercially available kits.  相似文献   

15.
Abstract: DNA amplification is a fundamental yet costly process used in DNA analysis. This study evaluated half‐reaction amplification (12.5, 12, and 13 uL) using the Promega Powerplex® 16 Kit with the hope of reducing sample analysis costs by half. A sensitivity study was completed, along with the testing of various blood stain samples including those with low (<0.40 ng) and high DNA concentrations (>3.0 ng), peak height imbalances, and allelic drop‐out. Also, 467 samples submitted to the MUFSC laboratory for testing were analyzed. Results indicate that half‐reaction amplification produced higher quality profiles than full‐reactions. Average peak heights increased by 85%, peak height imbalances improved, and drop‐out was eliminated in 75.8% of samples. Only eight of 467 case samples required re‐amplification, a success rate of 94% was observed, and the repeat rate decreased significantly. Finally, a DNA input of 0.25–1.0 ng is ideal for half‐reaction amplification.  相似文献   

16.
A single duplex assay to determine both the amount of total human DNA and the amount of male DNA in a forensic sample has been developed. This assay is based on TaqMan technology and uses the multicopy Alu sequence to quantitate total human DNA and the multicopy DYZ5 sequence to quantitate Y chromosomal (male) DNA. The assay accepts a wide concentration range of input DNA (2 muL of 64 ng/microL to 0.5 pg/microL), and also allows detection of PCR failure. The PCR product sizes Alu (127 bp) and DYZ5 (137bp) approximate that of the smaller short tandem repeats (STRs) which should make the assay predictive of STR success with degraded DNA. The assay was optimized for probe/primer concentrations and BSA addition and validated on its reproducibility, on its human specificity, on its nonethnic variability, for artificial mixtures and adjudicated casework, for the effect of inhibitors and for state of DNA degradation. This assay should prove very usual in forensic analyses because knowing the relative amounts of male versus female DNA can allow the examiner to decide which samples may yield the most probative value in a case or direct the samples to methods that would yield the greatest information.  相似文献   

17.
Trace DNA is often found in forensic science investigations. Experience has shown that it is difficult to retrieve a DNA profile when trace DNA is collected from clothing. The aim of this study was to compare four different DNA collection techniques on six different types of clothing in order to determine the best trace DNA recovery method. The classical stain recovery technique using a wet cotton swab was tested against dry swabbing, scraping and a new method, referred to as the mini‐tape lifting technique. Physical contact was simulated with three different “perpetrators” on 18 machine‐washed garments. DNA was collected with the four different DNA recovery methods and subjected to standard PCR‐based DNA profiling. The comparison of STR results showed best results for the mini‐tape lifting and scraping methods independent of the type of clothing. The new mini‐tape lifting technique proved to be an easy and reliable DNA collection method for textiles.  相似文献   

18.
A continual challenge in the field of forensic DNA analysis is the amplification and interpretation of degraded and low-copy number (LCN) DNA obtained from amounts of limited biological evidence. It has been well established that DNA profiles obtained from the amplification of low quality, degraded, and/or LCN DNA samples are often of limited value due to the frequent occurrence of preferential amplification during polymerase chain reaction (PCR). The by-products of preferential PCR amplification are often observed as inter- and intra-locus peak imbalance, allelic dropout, and/or locus dropout. These are all artifacts that are identified during the interpretation phase of analysis rather than by improving the quality of the DNA present. While it is theoretically possible to obtain a complete DNA profile from a single cell, in reality, profiles obtained from suboptimal amounts of DNA are difficult to interpret and frequently inconsistent when replicated. Inspired by advances in next-generation sequencing techniques, we propose a methodology for simultaneously normalizing the abundance of PCR products across all short tandem repeat (STR) loci using the DNA exonuclease, duplex-specific nuclease (DSN). DSN is an enzyme isolated from the hepatopancreas of Red King (Kamchatka) crab that possesses a strong affinity for digesting double stranded DNA (dsDNA) and has limited activity toward single stranded DNA (ssDNA). Degraded DNA known to display peak imbalance and allele dropout was amplified using AmpFlSTR® Identifiler® Plus for 28 cycles. Following amplification, samples were denatured at 99.9 °C for 5 min and incubated with one unit of DSN at 62 °C in a 28 μl volume for 1 min. Nuclease activity was terminated through the addition of equal volume of 10 mM EDTA and 95 °C incubation for 2 min. Following DSN treatment, 21 of 30 alleles within the known profile exhibited some improvement in peak height balance. The findings obtained support the potential use of DSN treatment as a method for normalizing STR profiles and improving the quality of data from degraded and low quantity DNA samples.  相似文献   

19.
Simplified low-copy-number DNA analysis by post-PCR purification   总被引:5,自引:0,他引:5  
Frequently, evidentiary items contain an insufficient quantity of DNA to obtain complete or even partial DNA profiles using standard forensic gentotyping techniques. Such low-copy-number (LCN) samples are usually subjected to increased amplification cylces to obtain genetic data. In this study, a 28-cycle polymerase chain reaction (PCR) was used to evaluate various methods of post-PCR purification for their effects on the sensitivity of fluorophore-based allelic detection subsequent to capillary electrophoretic separation. The amplified product was purified using filtration, silica gel membrane, and enzyme mediated hydrolysis purification techniques and evaluated for their effect on fluorescent allelic signal intensity. A purification method was selected and its effect on fluorescent allelic signal intensity was compared with that of the unpurified PCR product. A method of post-PCR purification is described which increases the sensitivity of standard 28-cycle PCR such that profiles from LCN DNA templates (<100 pg DNA) can be obtained. Full DNA profiles were consistently obtained with as little as 20 pg template DNA without increased cycle number. In mock case type samples with dermal ridge fingerprints, genetic profiles were obtained by amplification with 28 cycles followed by post-PCR purification whereas no profiles were obtained without purification of the PCR product. Allele dropout, increased stutter, and sporadic contamination typical of LCN analysis were observed; however, no contamination was observed in negative amplification controls. Post-PCR purification of the PCR product can increase the sensitivity of capillary electrophoresis to such an extent that DNA profiles can be obtained from <100 pg of DNA using 28-cycle amplification.  相似文献   

20.
Formalin-fixed tissues provide the medical and forensic communities with alternative and often last resort sources of DNA for identification or diagnostic purposes. The DNA in these samples can be highly degraded and chemically damaged, making downstream genotyping using short tandem repeats (STRs) challenging. Therefore, the use of alternative genetic markers, methods that pre-amplify the low amount of good quality DNA present, or methods that repair the damaged DNA template may provide more probative genetic information. This study investigated whether whole genome amplification (WGA) and DNA repair could improve STR typing of formaldehyde-damaged (FD) tissues from embalmed cadavers. Additionally, comparative genotyping success using bi-allelic markers, including INDELs and SNPs, was explored. Calculated random match probabilities (RMPs) using traditional STRs, INDEL markers, and two next generation sequencing (NGS) panels were compared across all samples. Overall, results showed that neither WGA nor DNA repair substantially improved STR success rates from formalin-fixed tissue samples. However, when DNA from FD samples was genotyped using INDEL and SNP-based panels, the RMP of each sample was markedly lower than the RMPs calculated from partial STR profiles. Therefore, the results of this study suggest that rather than attempting to improve the quantity and quality of severely damaged and degraded DNA prior to STR typing, a more productive approach may be to target smaller amplicons to provide more discriminatory DNA identifications. Furthermore, an NGS panel with less loci may yield better results when examining FD samples, due to more optimized chemistries that result in greater allelic balance and amplicon coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号