首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Identification of 6-acetylmorphine, a specific metabolite of heroin, is considered to be definitive evidence of heroin use. Although 6-acetylmorphine has been identified in oral fluid following controlled heroin administration, no prevalence data is available for oral fluid specimens collected in the workplace. We evaluated the prevalence of positive test results for 6-acetylmorphine in 77,218 oral fluid specimens collected over a 10-month period (January-October 2001) from private workplace testing programs. Specimens were analyzed by Intercept immunoassay (cutoff concentration=30 ng/ml) and confirmed by GC-MS-MS (cutoff concentrations=30 ng/ml for morphine and codeine, and 3 ng/ml for 6-acetylmorphine). Only morphine-positive oral fluid specimens were tested by GC-MS-MS for 6-acetylmorphine. A total of 48 confirmed positive morphine results were identified. An additional 107 specimens were confirmed for codeine only. Of the 48 morphine-positive specimens, 32 (66.7%) specimens were positive for 6-acetylmorphine. Mean concentrations (+/-S.E.M.) of morphine, 6-acetylmorphine and codeine in the 32 specimens were 755+/-201, 416+/-168 and 196+/-36 ng/ml, respectively. Concentrations of 6-acetylmorphine in oral fluid ranged from 3 to 4095 ng/ml. The mean ratio (+/-S.E.M.) of 6-acetylmorphine/morphine was 0.33+/-0.06. It is suggested that, based on controlled dose studies of heroin administration, ratios >1 of 6-acetylmorphine/morphine in oral fluid are consistent with heroin use within the last hour before specimen collection. The confirmation of 6-acetylmorphine in 66.7% of morphine-positive oral fluid specimens indicates that oral fluid testing for opioids may offer advantages over urine in workplace drug testing programs and in testing drugged drivers for recent heroin use.  相似文献   

2.
Acetylcodeine (AC), an impurity of illicit heroin synthesis, was investigated as a urinary biomarker for detection of illicit heroin use. One hundred criminal justice urine specimens that had been confirmed positive by GC/MS for morphine at concentrations >5000 ng/ml were analyzed for AC, 6-acetylmorphine (6AM), codeine, norcodeine and morphine. The GC/MS analysis was performed by solid phase extraction and derivatization with propionic anhydride. Total codeine and morphine concentrations were determined by acid hydrolysis and liquid/liquid extraction. AC was detected in 37 samples at concentrations ranging from 2 to 290 ng/ml (median, 11 ng/ml). 6AM was also present in these samples at concentrations ranging from 49 to 12 600 ng/ml (median, 740 ng/ml). Of the 63 specimens negative for AC, 36 were positive for 6AM at concentrations ranging from 12 to 4600 ng/ml (median, 124 ng/ml). When detected, the AC concentrations were an average of 2.2% (0.25 to 10.2%) of the 6AM concentrations. There was a positive relationship between AC concentrations and 6AM concentrations (r=0.878). Due to its very low concentration in urine, AC was found to be a much less reliable biomarker for illicit heroin use than 6AM in workplace or criminal justice urine screening programs. However, AC detection could play an important role in determining if addicts in heroin maintenance programs are supplementing their supervised diacetylmorphine doses with illicit heroin.  相似文献   

3.
We evaluated the performance of Emit(?) II Plus 6-Acetylmorphine Assay for human urine screening on the Viva-E(?) analyzer. Precision was evaluated using the cutoff and ±25% controls. Recovery and linearity were studied by spiking 6-acetylmorphine (6-AM) into human urine pools. Accuracy was evaluated using urine specimens and the results were compared to those from GC/MS. Cross-reactivity with structurally related drugs was assessed at different cross-reactant concentrations. Interferences were assessed in the presence of 7.5 and 12.5 ng/mL of 6-AM. The qualitative repeatability coefficients of variation (CV's) ranged from 0.3% to 0.4% and the within-lab CV's ranged from 2.0% to 2.2%. In analyte units (ng/mL), the repeatability CV's ranged from 1.3% to 2.2% and the within-lab CV's ranged from 2.6% to 4.3%. The limit of detection of the assay was found to be 2.1 ng/mL. Recovery was within 15% of expected value. Linearity was 2.1-20 ng/mL. Method comparison showed 99% agreement with GC/MS. The assay had minimal cross-reactivity with morphine, morphine-3-glucuronide, morphine-6-glucuronide and other opioids. No interference was observed with endogenous interferences and structurally unrelated drugs. The assay correctly classified CAP survey samples. The Emit(?) II Plus 6-Acetylmorphine Assay will be a suitable screening method for urine specimens in both qualitative and semi-quantitative analyses.  相似文献   

4.
Recreational drugs, such as cocaine and heroin, are often adulterated with other pharmacological agents to either enhance or diminish the drug effects. Between April 21, 2006 and August 8, 2006, the Philadelphia Medical Examiner's Office detected xylazine (a veterinary sedative) and fentanyl (a synthetic opioid) in specimens taken from seven cases. Initial immunoassay screening was performed on urine and blood for fentanyl, opiate, cocaine, phencyclidine (PCP), and benzodiazepines. All tests reported positive were confirmed by gas chromatography-mass spectrometry. All seven xylazine positive cases tested positive for fentanyl and six cases tested positive for 6-acetylmorphine (a metabolite and definitive marker for heroin). The seventh case was positive for morphine and had a history of heroin abuse. Xylazine was present in urine in all seven cases and blood levels were detected in three cases. The blood concentrations ranged from trace to 130 ng/mL. Fentanyl was present in the blood and urine in each case and blood concentrations ranged from 4.7 to 47 ng/mL. Adulteration of illicit drugs has become an epidemic health concern for drug users. Healthcare professionals need to be aware of this issue, so the patients can be treated in an effective, timely manner.  相似文献   

5.
生物检材中吗啡类生物碱的LC-MS/MS分析   总被引:7,自引:0,他引:7  
Xiang P  Shen M  Shen BH  Ma D  Bu J  Jiang Y  Zhuo XY 《法医学杂志》2006,22(1):52-54,57
目的针对滥用药物分析鉴定实践中亟待解决的问题,开展LC-MS/MS分析生物检材中吗啡类生物碱的应用研究。方法满足不同的鉴定需要,分别建立血液、尿液、唾液和头发等生物检材的样品前处理方法,确定同时分析海洛因、单乙酰吗啡、吗啡、可待因、乙酰可待因、二氢可待因酮和氢吗啡酮等吗啡类生物碱的LC-MS/MS方法。将方法应用于实际案例。结果所建立的方法对吗啡类生物碱分离良好。尿液稀释法、尿液提取法和头发中吗啡的最低检测限(LOD)分别为10ng/mL、0.01ng/mL和0.01ng/mg。结论所建立的方法简便、快速、特异性强、灵敏度高。目标物中加入二氢可待因酮和氢吗啡酮扩大了方法的实用范围。  相似文献   

6.
The presence of the heroin metabolite 6-monoacetylmorphine (6-MAM) in urine is used to definitively identify recent heroin abuse. A rapid and sensitive GC-MS method for the simultaneous analysis of codeine, norcodeine, morphine, normorphine and 6-MAM in urine was developed and successfully applied to the analysis of 321 'heroin-positive' urine specimens from individual subjects (identified by the presence of 6-MAM), to provide quantitative urinary opiate excretion data for heroin abusers.The cohort analysed was composed of 238 males (age range 16-53 years) and 83 females (age range 16-50 years). The concentrations of free 6-MAM, morphine and codeine determined in these 321 specimens ranged between 103-246,312, 129-193,600 and 103-519,000 microg/l, respectively. Free norcodeine and normorphine concentrations were found to range between 143-50,200 and 205-149,700 microg/l, respectively. A statistically significant relationship was determined between the subject age and the 6-MAM concentration, possibly indicating opiate tolerance in these individuals.  相似文献   

7.
In this study, poppy seeds were examined for a natural constituent that might serve as a maker for the seeds' ingestion as opposed to opiate abuse. Thebaine was selected as possible marker, since it was found to be a component of all poppy seeds examined and was not a natural component of different heroin samples. During the course of this investigation, a new extraction and cleanup procedure was developed for the gas chromatographic/nitrogen phosphorus detection (GC/NPD) and gas chromatographic/mass spectrometric (GC/MS) analysis of morphine and codeine in urine. A linear response, over a concentration range of 25 to 600 ng/mL, was obtained for codeine and morphine (r = 0.9982 and 0.9947, respectively). The minimum detectable level (LOD) and limit of quantitation (LOQ) for morphine were 10 and 30 ng/mL, respectively; whereas LOD and LOQ for codeine were 2 and 8 ng/mL, respectively. The coefficients of variance (CV, n = 6) for morphine and codeine analyses at the 100-ng/mL level were 13.3 and 4.6%, respectively. This procedure was used for the analysis of urine samples from five poppy seed eaters who each ingested 200 g of poppy seed cake. Results indicated that significant amounts of morphine and codeine are excreted in urine and that in all subjects, at least at one point in time, the apparent morphine concentration as determined by radioimmunoassay (RIA) analysis exceeded the cutoff value (300 ng/mL) established for screening. Thebaine was not detected in urine specimens collected following poppy seeds ingestion and thus could not be used as a marker.  相似文献   

8.
目的确定海洛因吸毒者头发中海洛因、6-单乙酰吗啡(6-MAM)、吗啡(MOR)、可待因(COD)和乙酰可待因(AC)的浓度并考察其与国际毛发分析协会(Society of Hair Testing,SOHT)建议标准的适用性。方法 50个头发样品经冷冻研磨处理后采用液相色谱-串联质谱方法分析。结果所有样品中均检出6-MAM,并且浓度高于SOHT所建议的0.2 ng/mg,其中海洛因、6-MAM、MOR、COD和AC的浓度与其它研究报道无明显差异。头发中6-MAM:MOR的比率在0.15~36.27范围。结论由于各实验室间毛发样品前处理方法不同,而且存在吸食毒品中成分、剂量、吸食方式、代谢、头发颜色等诸多个体差异,本研究认为采用头发中6-MAM:MOR的比率大于1.3标准难以应用于鉴定海洛因吸毒。  相似文献   

9.
A previous study suggested that small amounts of morphine are metabolically converted to hydromorphone. In the present study, morphine positive urine specimens obtained from a postmortem laboratory and a random urinalysis program were tested for morphine, codeine, hydromorphone, hydrocodone, oxymorphone, and oxycodone to assess the possibility that small amounts of hydromorphone are produced from the metabolism of morphine. The opioids were analyzed by gas chromatography-mass spectrometry as their respective trimethylsilyl derivatives following solid phase extraction. The limit of detection for hydromorphone was 5 ng/mL. A total of 73 morphine positive urine specimens were analyzed, with morphine concentrations ranging from 131 to 297,000 ng/mL. Hydromorphone was present at a concentration > or =5 ng/mL in 36 of these specimens at concentrations ranging from 0.02% to 12% of the morphine concentration. Hydrocodone was not detected in these specimens at the assay detection limit of 25 ng/mL. These results support earlier work suggesting that the detection of hydromorphone in urine specimens does not necessarily mean that exogenous hydromorphone or hydrocodone was used.  相似文献   

10.
The aim of this study was to evaluate postmortem incorporation of opiates in bone and bone marrow after diacetylmorphine (heroin) administration to mice. Mice were given acute (lethal dose of 300 mg/kg) or chronic (10 and 20 mg/kg/24 h for 20 days) intraperitoneal administration of diacetylmorphine. The two metabolites of diacetylmorphine, 6-acetylmorphine (6-AM) and morphine, were extracted from whole blood, brain, spinal cord, bone marrow and bone (after hydrolysis) using a liquid/liquid method. Quantification was performed by gas chromatography-mass spectrometry (GC/MS). Results showed that after acute administration, opiates were present in all studied tissues. Morphine concentrations appeared to be higher than those of 6-AM in blood (52.4 microg/mL versus 27.7 microg/mL, n=12), bone marrow (87.8 ng/mg versus 8.9 ng/mg, n=6) and bone (0.85 ng/mg versus 0.43 ng/mg, n=6), but 6-AM concentrations were higher than those of morphine in brain (14.0 ng/mg versus 7.4 ng/mg, n=12) and spinal cord (27.8 ng/mg versus 20.8 ng/mg, n=12). No correlation was found for both compounds between blood concentrations and either brain, spinal cord, bone or bone marrow concentrations while a significant one was found between brain and spinal cord concentrations either for morphine (r=0.89, n=12, p<0.001) or 6-AM (r=0.93, n=12, p<0.001), the concentration being higher in spinal cord than in brain. When bones were stored for 2 months, only 6-AM remained in bone marrow but not in bone. After chronic administration, mice being sacrificed by cervical dislocation 24 h after the last injection, no opiate was detected in any studied tissues. Further studies are required, in particular in human bones, but these results seem to show that 6-AM could be detect in bone marrow several weeks after the death and could be an alternative tissue for forensic toxicologist to detect a fatal diacetylmorphine overdose, even if no correlation between blood and bone marrow was observed. On the other hand, neither bone tissue nor bone marrow will allow the confirmation of a chronic diacetylmorphine use.  相似文献   

11.
尿样中海洛因代谢物的测定及海洛因滥用的确认   总被引:5,自引:1,他引:4  
Wu HJ  Shen M  Xian P  Xiang P  Shen BH  Bu J  Huang ZJ 《法医学杂志》1999,15(2):93-94
用SPE-GC-NPD法建立了尿样中吗啡、6-单乙酰吗啡及可待因的定性分析方法,适用于海洛因滥用者的尿样分析。尿样中吗啡及可待因的最小检测限均为50ng/ml。方法的相对标准偏差分别为:吗啡11.3%(n=5),可待因14.2%(n=5)。方法简便、灵敏、快速,15min可完成一例尿样的分析。研究了服用含可待因成分的复方甘草合剂后,尿样中的吗啡及可待因的峰面积比为0.457±0.197(P=99%);统计了40例明确滥用海洛因尿液的分析结果,吗啡与可待因的峰面积比为3.46±0.894,P=99%。可作为判断海洛因滥用的依据。同时与免疫板法比较,附55例免疫板法阳性尿样的分析结果  相似文献   

12.
Hair of young subjects (N = 36) suspected for drug abuse was analysed for morphine, codeine, heroin, 6-acetylmorphine, cocaine, methadone, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), and 3,4-methylenedioxyethylamphetamine (MDEA). The analysis of morphine, codeine, heroin, 6-acetylmorphine, cocaine, and methadone in hair included incubation in methanol, solid-phase extraction, derivatisation by the mixture of propionic acid anhydride and pyridine, and gas chromatography/mass spectrometry (GC/MS). For amphetamine, methamphetamine, MDA, MDMA, and MDEA analysis, hair samples were incubated in 1M sodium hydroxide, extracted with ethyl acetate, derivatised with heptafluorobutyric acid anhydride (HFBA), and assayed by GC/MS. The methods were reproducible (R.S.D. = 5.0-16.1%), accurate (85.1-100.6%), and sensitive (LoD = 0.05-0.30ng/mg). The applied methods confirmed consumption of heroin in 18 subjects based on positive 6-acetylmorphine. Among these 18 heroin consumers, methadone was found in four, MDMA in two, and cocaine in two subjects. Cocaine only was present in two, methadone only in two, methamphetamine only in two, and MDMA only in seven of the 36 subjects. In two out of nine coloured and bleached hair samples, no drug was found. Despite the small number of subjects, this study has been able to indicate the trend in drug abuse among young people in Croatia.  相似文献   

13.
A morphine to codeine ratio greater than unity (M/C>1) has been suggested as an indicator of heroin use in living individuals. The aim of this study was to examine the morphine to codeine ratio in a large population (N=2438) of forensically examined autopsy cases positive for 6-monoacetylmorphine (6-MAM) and/or morphine in blood and/or urine. Blood and urine concentrations of 6-MAM, morphine and codeine were examined using GC-MS and LC-MS/MS methods. In 6-MAM positive samples, the M/C ratio was greater than unity in 98% (N=917) of the blood samples and 96% (N=665) of the urine samples. Stratification of 6-MAM negative cases by M/C above or below unity revealed similarities in morphine and codeine concentrations in cases where M/C>1 and 6-MAM positive cases. Median blood and urine morphine concentrations were 8-10 times greater than codeine for both groups. Similarly to 6-MAM positive cases, 25-44 year-old men prevailed in the M/C>1 group. In comparison to cases where M/C ≤ 1, the M/C ratio was a hundred times higher in both 6-MAM positive and M/C>1 cases. The range of morphine concentration between the lowest and the highest quintile of codeine in M/C>1 cases was similar to that in 6-MAM positive cases. This range was much higher than for M/C ≤ 1 cases. Moreover, linear regression analyses, adjusted for age and gender, revealed a strong positive association between morphine and codeine in 6-MAM positive and M/C>1 cases. The M/C ratio appeared to be a good marker of heroin use in post-mortem cases. Both blood and urine M/C>1 can be used to separate heroin users from other cases positive for morphine and codeine.  相似文献   

14.
A solid-phase enzyme immunoassay involving microtiter plates was recently proposed by International Diagnostic Systems corporation (IDS) to screen for buprenorphine in human serum. The performance of the kit led us to investigate its applicability in other biological matrices such as urine or blood, and also hair specimens. Low concentrations of buprenorphine were detected with the ELISA test and confirmed by HPLC/MS (buprenorphine concentrations measured by HPLC/MS: 0.3 ng/mL in urine, 0.2 ng/mL in blood, and 40 pg/mg in hair). The intra-assay precision values were 8.7% at 1 ng/mL of urine (n = 8), 11.5% at 2 ng/mL in serum (n = 8), and 11.5% at 250 pg/mg of hair (n = 8), respectively. The immunoassay had no cross-reactivity with dihydrocodeine, ethylmorphine, 6-monoacetylmorphine, pholcodine, propoxyphene, dextromoramide, dextrometorphan at 1 and 10 mg/L, or codeine, morphine, methadone, and its metabolite EDDP. A 1% cross-reactivity was measured for a norbuprenorphine concentration of 50 ng/mL. Finally, the immunoassay was validated by comparing authentic specimens results with those of a validated HPLC/MS method. From the 136 urine samples tested, 93 were positive (68.4%) after the ELISA screening test (cutoff: 0.5 ng/mL) and confirmed by HPLC/MS (buprenorphine concentrations: 0.3-2036 ng/mL). From the 108 blood or serum samples screened, 27 were positive (25%) after the ELISA test with a cutoff value of 0.5 ng/mL (buprenorphine concentrations: 0.2-13.3 ng/mL). Eighteen hair specimens were positive (72%) after the screening (cutoff: 10 pg/mg) and confirmed by LC/MS (buprenorphine concentrations: 40-360 pg/mg). The ELISA method produced false positive results in less than 21% of the cases, but no false negative results were observed with the immunological test. Four potential adulterants (hypochloride 50 mL/L, sodium nitrite 50 g/L, liquid soap 50 mL/L, and sodium chloride 50 g/L) that were added to 10 positive urine specimens (buprenorphine concentrations in the range 5.3-15.6 ng/mL), did not cause a false negative response by the immunoassay.  相似文献   

15.
固相萃取/LC-MS/MS测定尿液中吗啡类药物   总被引:2,自引:1,他引:1  
目的 建立尿液中吗啡类药物的固相萃取/LC—MS/MS方法。方法采用OASIS MCX3cc(60mg)固相萃取柱进行提取,应用LC—MS/MS方法进行检测,运用保留时间和MRM方式对尿液中吗啡类药物及其代谢物进行定性定量分析。结果磷酸盐缓冲液pH4.0时,海洛因、6-MAM、可待因、吗啡、M3G的固相萃取回收率分别达64.33%-70.21%,96.95%~117.57%,83.60%~123.63%,68.82%~91.03%,94.64%~107.33%;最低检测限(LOD)分别为5、10、5、5、2pg,线性范围0.005~10μg/mL;相关系数分别为0.9998、0.9958、0.9992、0.9994、0.9997。结论本文所建方法,适用于尿液中吗啡类药物的分析。  相似文献   

16.
The study was carried out to investigate external contamination of hair by blood in heroin-related post-mortem cases. Solutions were prepared containing 0.05, 0.1, 0.2, 0.5 and 3.0μg/mL of 6-monoacetylmorphine (6-AM) only or morphine only in human blood. Samples of approximately 3.2g of drug-free hair were contaminated by soaking in the blood solutions for 5min. They were then removed and left at room temperature. Approximately 0.5g of hair was collected from each of the blood soaked hair samples at 6h, 1, 2, 4 and 7 days after contamination. As each hair sample was collected it was shampoo-washed to prevent further drug absorption. Hair samples were analysed in triplicate using a fully validated method described previously. 6-AM broke down to morphine in all samples. In hair contaminated with blood containing 0.05, 0.1 and 0.2μg/mL 6-AM or morphine drug was either not detected or was detected below the limit of quantitation (0.2ng/mg hair) at all contamination times. In hair contaminated with blood spiked with 0.5μg/mL morphine, the concentration in hair ranged from 0.54 to 0.91ng/mg and in hair contaminated with blood spiked with 3.0μg/mL, from 3.25 to 5.77ng/mg. The concentrations of 6-AM ranged from 0.65 to 1.11ng/mg and morphine from 0.34 to 0.80ng/mg in hair contaminated with 0.5μg/mL 6-AM in blood. 6-AM ranged from 2.12 to 3.67ng/mg and morphine from 0.84 to 2.05ng/mg in hair contaminated with 3μg/mL 6-AM in blood. For 6-AM and morphine ANOVA statistical evaluation showed no significant difference among the concentrations over time.  相似文献   

17.
It is known that US paper currency in the general circulation is contaminated with cocaine. Several mechanisms have been offered to explain this finding, including contamination due to handling during drug deals and the use of rolled up bills for snorting. Drug is then transferred from one contaminated bill to others during counting in financial institutions. The possibility of contamination of currency with other drugs has not been reported. In this study, the author reports the analysis of 10 randomly collected US$ 1 bills from five cities, for cocaine, heroin, 6-acetylmorphine (6-AM), morphine, codeine, methamphetamine, amphetamine and phencyclidine (PCP). Bills were immersed in acetonitrile for 2h prior to extraction and GC-MS analysis. Results showed that 92% of the bills were positive for cocaine with a mean amount of 28.75+/-139.07 microg per bill, a median of 1.37 microg per bill, and a range of 0.01-922.72 microg per bill. Heroin was detected in seven bills in amounts ranging from 0.03 to 168.50 microg per bill: 6-AM and morphine were detected in three bills; methamphetamine and amphetamine in three and one bills, respectively, and PCP was detected in two bills in amounts of 0.78 and 1.87 microg per bill. Codeine was not detected in any of the US$ 1 bills analyzed. This study demonstrated that although paper currency was most often contaminated with cocaine, other drugs of abuse may be detected in bills.  相似文献   

18.
The simultaneous determination of buprenorphine (Temgesic) and its major metabolite, N-desalkylbuprenorphine, in urine samples has been studied. By using reversed-phase high-performance liquid chromatography (HPLC) with electrochemical detection, therapeutic concentrations of unconjugated buprenorphine down to 0.2 ng/mL, and 0.15 ng/mL for the metabolite, can be detected in urine samples. This method has been applied to a variety of urine samples from drug users. The possible analytical interference from several other regulated drugs has been studied. The results were also compared with those obtained from a commercial radioimmunoassay (RIA) test. This test is only capable of detecting buprenorphine concentrations higher than 1 ng/mL.  相似文献   

19.
A method was developed and validated for analyzing 6-monoacetylmorphine, morphine, 6-acetylcodeine, and codeine in routine postmortem liver and kidney specimens using liquid chromatography–tandem mass spectrometry. Samples were prepared with a Stomacher instrument followed by solid-phase extraction. All calibration curves [0.5–1000 ng/g] were linear with coefficients of determination greater than 0.99 and limits of quantification of 1.0 ng/g. Within-run precision ranged between 2.0% and 8.0%, between-run precision ranged between 1.0% and 9.0%, and accuracy ranged between −5.0% and +3.0%. Matrix effects ranged from −18% to +9%. After matrix effects were excluded, analytical recoveries ranged from 76% to 94%. The distributions of 6-monoacetylmorphine, morphine, 6-acetylcodeine, and codeine were investigated in 31 postmortem cases in which heroin was the primary cause of death. In the current study, the median free morphine ratios were calculated for liver to blood and kidney to blood, which were 2.2 and 4.0, respectively. The current report highlights the importance of testing multiple specimens, including liver and kidney, in heroin-related deaths, especially if no blood samples are available. Furthermore, this work presents new information regarding the distribution of heroin metabolites in liver and kidney.  相似文献   

20.
Morphine, the active metabolite of heroin, is rapidly inactivated by glucuronidation at the 3 carbon. Unconjugated (pharmacologically active) morphine was measured in postmortem blood by radioimmunoassay using an antibody-coated tube kit. The kit shows less than 0.2% cross-reactivity with codeine and morphine-glucuronide. Unconjugated morphine concentrations were confirmed by gas chromatography/mass spectrometry (GC/MS) using deuterated morphine as the internal standard. The blood was precipitated with 10% trichloroacetic acid (TCA) and concentrated hydrochloric acid (HCl), centrifuged, and decanted. The supernatant was then either diluted (unhydrolyzed) or heated to 100 degrees C, 30 min (hydrolyzed), followed by a wash with 4:1 chloroform:isopropranol. The upper aqueous layer was then saturated with sodium bicarbonate (NaHCO3) and extracted with 4:1 chloroform:isopropranol. The organic layer was evaporated, derivatized with trifluoroacetic anhydride (TFA), and analyzed by selected ion monitoring (SIM) GC/MS. Comparison of the results for unconjugated morphine by radioimmunoassay and unhydrolyzed morphine by GC/MS gave a correlation coefficient of r = 0.98, n = 100. Unconjugated morphine ranged from 0 to 100% of total morphine with a mean of 42%, n = 200, for heroin or morphine involved deaths. Review of 56 putative rapid deaths gave a mean of 68% unconjugated morphine with a range of 26 to 100%. The ratio of unconjugated to total morphine was found to be stable in postmortem blood after more than a year of storage at room temperature, within the precision of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号