首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 296 毫秒
1.
利多卡因在蛛网膜下腔麻醉致死犬体内的分布   总被引:2,自引:0,他引:2  
目的 观察利多卡因蛛网膜下腔致死犬体内的分布及脊髓液、脊髓与血液中利多卡因含量的比值。方法薄层扫描法检测血、脊髓液、侧脑室液、各节段脊髓和各脏器组织中利多卡因含量。结果 蛛网膜下腔麻醉致死犬脊髓液、各节段脊髓、脑、血液和其它各脏器中利多卡因含量分别为485.6±51.5μg/ml、226.8±35.2-353.8±44.0μg/g、44.9±11.51μg/g、40.3±6.5μg/ml和13.5±13.7-38.0±9.8μg/g。脊髓液与血液中利多卡因含量之比为12.4±2.7,各节段脊髓与血液之比为5.7±0.9-9.0±2.6。结论 蛛网膜下腔麻醉致死犬脊髓液中利多卡因含量最高,脊髓中次之,血液和其它组织中含量较低。脊髓液/血液、脊髓/血液比值平均可达12.4和5.7-9.0。  相似文献   

2.
目的研究利多卡因及其代谢产物单乙基甘氨酰二甲苯胺(MEGX)在蛛网膜下腔麻醉致死犬体内的死后再分布规律。方法犬6只随机分为A、B两组,分别经蛛网膜下腔注射0.5倍(6.34mg/kg)和5倍(63.35mg/kg)硬膜外麻醉极量的盐酸利多卡因,于死后0h、12h、24h、36h、72h取心血、外周血、肝、脑等,采用高效液相色谱法(HPLC)检测其中利多卡因及MEGX的含量。结果 A组犬死后72h,心血、外周血和脑中利多卡因含量与死亡当时的比值(Ct/C0)分别为4.74,14.87,7.67,均呈上升趋势(P0.05),MEGX含量与死亡当时含量差异无统计学意义(P0.05);B组犬死后72h,心血中利多卡因含量Ct/C0值为0.36,呈下降趋势(P0.05),脑中为3.48(P0.05)呈升高的趋势,肝中MEGX含量与死亡当时相比差异无统计学意义(P0.05)。结论蛛网膜下腔不同剂量麻醉致死犬体内利多卡因均会发生死后再分布,MEGX未发生死后再分布。  相似文献   

3.
利多卡因蛛网膜下腔麻醉致死的动物模型   总被引:4,自引:3,他引:1  
目的 建立利多卡因麻醉致死的动物模型。方法 犬蛛网膜下腔注射利多卡因(37.01mg/kg体重),观察麻醉致死过程的生命体征变化及死后各器官的病理改变特点。结果 实验组犬心电、血压和呼吸消失的平均时间分别为23.8min(7-42min)、16.4min(7-35min)和18.6min(10~47min)。各器官病理改变均呈急死征象。结论 所建模型实验动物的表现和生命体征变化符合蛛网膜下腔麻醉致死的生前表现,可应用于利多卡因麻醉意外致死案件法医学鉴定的实验研究。  相似文献   

4.
目的研究溴敌隆及其代谢物-苄叉丙酮在中毒致死犬体内死后分布规律,为溴敌隆中毒检材的采取提供实验依据。方法分别经口给予犬2倍和4倍LD_(50)溴敌隆,待其死亡后迅速解剖取材,气相色谱-质谱联用法测定心血、外周血、尿、胆汁、心、肝、脾、肺、肾、脑、左下肢肌、膀胱、胃、胃内容、胰等脏器和体液中溴敌隆和代谢物-苄叉丙酮的含量。结果犬经2倍和4倍LD_(50)溴敌隆灌胃染毒后3d开始出现出血症状,(178.40±20.94)h后死亡。溴敌隆和代谢物-苄叉丙酮在各组织脏器及体液中的死后分布为:溴敌隆2LD_(50)组溴敌隆:胆汁尿、肝、心、肾心血、外周血、脾、肺等;苄叉丙酮:胆汁、尿、心血、外周血、肺、胃内容中含量高于其他脏器。溴敌隆4LD_(50)组溴敌隆:胆汁、尿肝、外周血心血、胃内容物等脏器。苄叉丙酮:胆汁、尿、肺浓度高于其他脏器。结论溴敌隆及其代谢物-苄叉丙酮在中毒致死犬体内死后分布不均匀,溴敌隆在胆汁、尿、肝脏、心血和外周血含量较高,代谢物-苄叉丙酮在胆汁、尿、肺较高。胆汁、尿、肝脏、心血、外周血可作为疑似溴敌隆中毒毒物分析的检材。  相似文献   

5.
目的建立利多卡因硬膜外麻醉和静脉注射致死的动物模型。方法本地杂种犬18只其中6只经硬膜外腔、6只经股静脉注射利多卡因(63.35mg/kg体重),对照组3只经硬膜外腔、3只经股静脉按注射生理盐水(3.2ml/kg体重)。观察动物致死过程的生命体征变化及死后各组织器官的病理改变特点。结果硬膜外麻醉致死犬心电、血压和呼吸消失的平均时间分别为28 min(22~45 min)、23.6 min(20~42 min)、22 min(18~35 min);静脉注射致死犬血压、心电和呼吸消失的平均时间分别为6.5 min(5~8min)、8 min(6~10min)、7.2 min(4~9min);各器官病理改变均呈淤血、水肿等征象。结论该模型实验动物的表现和生命特征变化符合椎管内麻醉中毒、致死的表现,可用于利多卡因麻醉意外致死案件的法医学鉴定研究。  相似文献   

6.
目的研究曲马多在中毒家兔体内死后分布规律,为曲马多中毒检材采取提供实验依据。方法家兔经口给予10倍LD50曲马多,待家兔死亡后迅速解剖取样,气相色谱/质谱联用和气相色谱-FTD法测定其体液、脏器、大脑及右上肢和右下肢肌肉中曲马多的含量,比较其变化规律。结果血液和肝脏中曲马多的最低检出限分别为0.05μg/mL和0.05μg/g,提取回收率为97.60%±0.65%~103.10%±1.24%。曲马多在家兔体内的死后分布为:肾〉胃〉肝〉脾〉肺〉脑〉心〉上肢肌肉〉下肢肌肉〉〉体液(尿〉胆汁、心血〉玻璃体液)。结论大剂量曲马多中毒致死后在体内分布不均匀,组织中曲马多含量明显高于心血、胆汁等体液。  相似文献   

7.
正1简要案情死者李某,女性,41岁。某年5月25日晚,因情感纠纷被他人用菜刀砍切颈部致死。2尸体检验案发后12h,行尸体检验。尸表检验:左侧颈项部17.5cm×13.5cm范围内见多个砍切创口,创口互相交叉、重叠;局部肌肉挫碎;创口处颅骨外板骨折;第1颈椎及颈髓横断、第4、5颈椎椎体可见砍痕(图1)。解剖检验:头部创口对应处见头皮下出血,颅骨外板骨折。右侧大脑蛛网膜下腔广泛性出血,全脑蛛网膜下腔见大量小气泡,部分气泡呈串珠样(图2),颅底未见骨折。  相似文献   

8.
1案例某男,29岁,酒后与人争执,突然倒地死亡。尸检:体表未见明显损伤。头皮下、帽状腱膜下以及颈部皮下、肌肉未见出血。颅骨、寰椎、枢椎等未见骨折,寰椎、枢椎未见错位。硬脑膜外、硬脑膜下未见出血。脑底部蛛网膜下腔出血以颈髓、延脑处最著,并从双侧大脑半球外侧裂向大脑顶部延伸。双侧小脑扁桃体疝形成。小心保护脑部血管取出脑组织,仔细检查脑底动脉及分支发现左侧椎动脉颅内段部分管壁轻度增厚、变硬,在福尔马林固定前用止血钳夹闭右侧椎动脉切端,从左侧椎动脉用钝头注射器向脑底动脉注射稀释蓝墨水,见墨水从左侧椎动脉增厚处上方快…  相似文献   

9.
目的建立甲胺磷的犬灌胃染毒致死模型,观察甲胺磷在犬体内的死后分布规律。方法犬经8倍LD50(7.4mg/kg)剂量甲胺磷灌胃后,观察其中毒症状,死亡后即刻解剖,分别取心、肝、脾、肺、肾、脑、右上肢肌、右下肢肌、胸肌、胃组织、心血、胆汁、玻璃体液和尿液,GC/MS和GC法检测其中甲胺磷含量。结果犬8倍LD50甲胺磷灌胃染毒后20min内出现中毒症状(,53.3±14.1)min死亡。各组织脏器及体液中甲胺磷含量由高到低分别为胃(99.84±0.87)μg/g、脾(46.87±28.67)μg/g、肝(43.82±22.74)μg/g、肾(43.79±29.04)μg/g、心血(35.36±13.98)μg/mL、肺(35.25±18.59)μg/g、尿34.81μg/mL、胸肌(19.23±17.18)μg/g、右上肢(16.92±8.98)μg/g、心(15.09±6.11)μg/g、右下肢(12.83±7.63)μg/g、脑(10.91±4.13)μg/g、胆汁(6.75±1.45)μg/mL、玻璃体液(6.22±4.97)μg/mL。结论甲胺磷在犬体内死后分布不均,胃、脾、肝、肾、心血、肺、尿检材中含量较高,可作为疑似甲胺磷中毒毒物分析的检材。  相似文献   

10.
目的建立甲拌磷灌胃染毒致死的大鼠动物模型,建立生物检材中甲拌磷的气相色谱和气相色谱质谱联用检测方法 ,观察甲拌磷在3种剂量染毒大鼠体内的死后分布特点。方法大鼠2LD50、4LD50或8LD50甲拌磷灌胃染毒,死后立即解剖,采集心、肝、脾、肺、肾、脑、肌肉、睾丸、心血和胃组织,GC/MS、GC/FPD法定性定量检测各组织和心血中甲拌磷。结果大鼠2LD50、4LD50和8LD50甲拌磷染毒后31±3min、19±4min和11±6min死亡。气相色谱和气相色谱质谱联用法均可检到甲拌磷。染毒死亡大鼠体内甲拌磷的含量由高到低顺序依次为:2LD50组:胃组织〉肝〉脾〉肾〉肺〉脑〉睾丸〉肌肉〉心〉心血。4LD50组:胃组织〉肝〉肺〉脾〉肾〉睾丸〉肌肉〉脑〉心〉心血。8LD50组:胃组织〉肝〉肾〉脾〉肺〉心〉肌肉〉睾丸〉心血〉脑。结论甲拌磷在大鼠体内死后分布不均匀。胃组织中含量最高,其次是肝、脾、肺和肾,脑、肌肉和睾丸含量最低。甲拌磷的灌胃染毒致死动物模型、气相色谱和气相色谱质谱联用方法及死后分布规律可应用于甲拌磷中毒死亡案件的法医学鉴定和法医毒物动力学研究。  相似文献   

11.
Tissue distribution of lidocaine after fatal accidental injection   总被引:4,自引:0,他引:4  
The accidental death of a 64-year-old heart patient as a result of the injection of an incorrect dose of lidocaine is presented. The attending nurse inadvertently administered an intravenous bolus of 10 mL of 20% lidocaine (2g). The patient should have received 5 mL of 2% lidocaine (0.1 g). Such iatrogenic overdoses of lidocaine arise from confusion between prepackaged dosage forms. Lidocaine concentrations (mg/L or mg/kg were: blood, 30; brain, 135; heart, 106; kidney, 204; lung, 89; spleen, 115; skeletal muscle, 20; and adipose, 1.3. The results indicate that even during cardiopulmonary resuscitation as much as 38% of the administered dose of lidocaine may be found in poorly perfused tissue such as skeletal muscle and adipose.  相似文献   

12.
This study presents a new animal model, the Large White Pig, which was tested for studying cannabinoids metabolism. The first step has focused on determination of plasma kinetics after injection of Delta(9)-tetrahydrocannabinol (THC) at different dosages. Seven pigs received THC by intravenous injections (50, 100 or 200 microg/kg). Plasma samples were collected during 48 h. Determination of cannabinoids concentrations were performed by gas chromatography/mass spectrometry. Results showed that plasma kinetics were comparable to those reported in humans. Terminal half-life of elimination was 10.6 h and a volume of distribution of 32 l/kg was calculated. In a second step, this model was used to determine the kinetic profile of cannabinoids distribution in tissues. Eight Large White male pigs received an injection of THC (200 microg/kg). Two pigs were sacrificed 30 min after injection, two others after 2, 6 and 24 h. Different tissues were sampled: liver, kidney, heart, lung, spleen, muscle, fat, bile, blood, vitreous humor and several brain areas. The fastest THC elimination was noted in liver tissue, where it was completely eliminated in 6 h. THC concentrations decreased in brain tissue slower than in blood. The slowest THC elimination was observed for fat tissue, where the molecule was still present at significant concentrations 24 h later. After 30 min, THC concentration in different brain areas was highest in the cerebellum and lowest in the medulla oblongata. THC elimination kinetics noted in kidney, heart, spleen, muscle and lung were comparable with those observed in blood. 11-Hydroxy-THC was only found at high levels in liver. THC-COOH was less than 5 ng/g in most tissues, except in bile, where it increased for 24 h following THC injection. This study confirms, even after a unique administration, the prolonged retention of THC in brain and particularly in fat, which could be at the origin of different phenomena observed for heavy users such as prolonged detection of THC-COOH in urine or cannabis-related flashbacks. Moreover, these results support the interest for this animal model, which could be used in further studies of distribution of cannabinoids in tissues.  相似文献   

13.
The aim of this study was to evaluate postmortem incorporation of opiates in bone and bone marrow after diacetylmorphine (heroin) administration to mice. Mice were given acute (lethal dose of 300 mg/kg) or chronic (10 and 20 mg/kg/24 h for 20 days) intraperitoneal administration of diacetylmorphine. The two metabolites of diacetylmorphine, 6-acetylmorphine (6-AM) and morphine, were extracted from whole blood, brain, spinal cord, bone marrow and bone (after hydrolysis) using a liquid/liquid method. Quantification was performed by gas chromatography-mass spectrometry (GC/MS). Results showed that after acute administration, opiates were present in all studied tissues. Morphine concentrations appeared to be higher than those of 6-AM in blood (52.4 microg/mL versus 27.7 microg/mL, n=12), bone marrow (87.8 ng/mg versus 8.9 ng/mg, n=6) and bone (0.85 ng/mg versus 0.43 ng/mg, n=6), but 6-AM concentrations were higher than those of morphine in brain (14.0 ng/mg versus 7.4 ng/mg, n=12) and spinal cord (27.8 ng/mg versus 20.8 ng/mg, n=12). No correlation was found for both compounds between blood concentrations and either brain, spinal cord, bone or bone marrow concentrations while a significant one was found between brain and spinal cord concentrations either for morphine (r=0.89, n=12, p<0.001) or 6-AM (r=0.93, n=12, p<0.001), the concentration being higher in spinal cord than in brain. When bones were stored for 2 months, only 6-AM remained in bone marrow but not in bone. After chronic administration, mice being sacrificed by cervical dislocation 24 h after the last injection, no opiate was detected in any studied tissues. Further studies are required, in particular in human bones, but these results seem to show that 6-AM could be detect in bone marrow several weeks after the death and could be an alternative tissue for forensic toxicologist to detect a fatal diacetylmorphine overdose, even if no correlation between blood and bone marrow was observed. On the other hand, neither bone tissue nor bone marrow will allow the confirmation of a chronic diacetylmorphine use.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号