首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbal smoking blends, available on the German market were analyzed and several known synthetic cannabinoids were identified (JWH-122 and JWH-018). In addition, we isolated a new active ingredient by silica gel column chromatography and elucidated the structure by nuclear magnetic resonance (NMR) methods. The compound was identified as JWH-307, a synthetic cannabinoid of the phenyl-pyrrole subclass with known in vitro binding affinities for cannabinoid receptors. To date, this is the first appearance of this subclass of cannabimimetics in such products. JWH-307 has been further characterized by gas chromatography accurate mass spectrometry (GC-HRMS), electrospray tandem mass spectrometry (ESI-MS/MS), ultraviolet (UV) and infrared (IR) spectroscopy. JWH-018 was among the first compounds banned by many countries world-wide including Germany. The identification of JWH-018 was striking, since this is the first report where JWH-018 recurred on the German market thus violating existing laws. A generic method was established to quantify synthetic cannabinoids in herbal smoking blends. Quantification was achieved using an isotopically labeled standard (JWH-018-D(3)). JWH-018 was found at a level of 150mg/g while JWH-122 and JWH-307 occurred as a mixture at a total level of 232mg/g.  相似文献   

2.
The aim of the present investigations was to find markers for differentiating between the consumption of illegal cannabis products and legal medication containing fully synthetic Δ9-tetrahydrocannabinol (Δ9-THC), e.g., Marinol capsules. Δ9-Tetrahydrocannabinolic acid A (Δ9-THCA-A) and Δ9-tetrahydrocannabivarinic acid A (Δ9-THCVA-A) were taken into consideration for analysis, because these substances are the precursors of Δ9-THC and Δ9-tetrahydrocannabivarin (Δ9-THCV) in plant material of Cannabis sativa and are not contained in medical THC formulations. Whereas Δ9-THCA-A is an already well investigated substance, there is little analytical data on Δ9-THCVA-A. The reason for the presented investigations was a case in which a man was tested positive for Δ9-THC during a routine traffic control claiming that the positive serum sample resulted from the intake of a THC medication (Marinol) and not from consuming illegal cannabis products. Sample preparation consisted of a protein precipitation with acetonitrile. Analysis was carried out on a Thermo Fisher LCQ Deca ion trap LC-MS-MS-system using electron spray ionization (ESI) in negative mode. MS(2)- and MS(3)-full scan spectra were recorded for Δ9-THCA-A and Δ9-THCVA-A starting from [M-H](-). Reference spectra were obtained by measuring a Δ9-THCA-A reference solution and an ethanolic cannabis extract for Δ9-THCVA-A as there is no reference material for this cannabinoid available on the market yet. Main transitions for Δ9-THCA-A were m/z 357→313 and 339 in the MS(2)-spectrum and m/z 313→245 and 191 in the MS(3)-spectrum. Fragmentation pattern of Δ9-THCVA-A was identical with a difference of 28 amu less for the precursor ion as well as the fragments due to a shorter alkyl side chain in the molecule (MS(2): m/z 329→285 and 311; MS(3): m/z 285→217 and 163). The two plant cannabinoids Δ9-THCA-A and Δ9-THCVA-A could be detected in the serum sample by LC-MS-MS which proved the intake of illegal cannabis products derived from plant material of C. sativa in the described case.  相似文献   

3.
The disposition in mice of the cannabimimetics JWH-018 and JWH-073 in blood and brain following inhalation of the smoke from the herbal incense product (HIP) "Magic Gold" containing 3.6% JWH-018, 5.7% JWH-073 and less than 0.1% JWH-398 (w/w) is presented. Specimens were analyzed by HPLC/MS/MS. The validation of the method is also presented. Five C57BL6 mice were sacrificed 20 min after exposure to the smoke of 200 mg of "Magic Gold" and a second set of five exposed mice were sacrificed after 20 h. Twenty minutes after exposure to "Magic Gold" smoke, blood concentrations of JWH-018 ranged from 42 to 160 ng/mL (mean: 88 ng/mL ± 42) and those of JWH-073 ranged from 67 to 244 ng/mL (mean: 134 ng/mL ± 62). Brain concentrations 20 min after exposure to "Magic Gold" smoke for JWH-018 ranged from 225 to 453 ng/g (mean: 317 ng/g ± 81) and those of JWH-073 ranged from 412 to 873 ng/g (mean: 584 ng/g ± 163). Twenty hours after exposure to "Magic Gold" smoke, JWH-018 was detected and quantified in only two of the five blood samples. Blood concentrations of JWH-018 were 3.4 ng/mL and 9.4 ng/mL. JWH-073 was detected in only one blood specimen 20 h after exposure at 4.3 ng/mL. Brain concentrations 20 h post exposure for JWH-018 ranged from 7 to 32 ng/g (mean: 19 ng/g ± 9). JWH-073 was not detected in 20 h post exposure brain specimens. JWH-398 was not detected in any of the blood or brain samples. The disposition data presented with the limited data available from human experience provide reasonable expectations for forensic toxicologists in JWH-018 or JWH-073 cases. As with THC after smoking marijuana, blood and brain concentrations of JWH-018 and JWH-073 after HIP smoking can be expected to rise initially to readily detected values, and then drop dramatically over the next few hours to several ng/mL or ng/g, and finally to be at extremely low or undetectable concentrations by 24h apparently due to extensive biotransformation, and redistribution to body fat.  相似文献   

4.
Abstract: Synthetic cannabinoid agonists are chemically diverse with multiple analogs gaining popularity as drugs of abuse. We report on the use of thin layer chromatography, gas chromatography mass spectrometry, high‐performance liquid chromatography, and liquid chromatography time of flight mass spectrometry for the identification and quantitation of these pharmacologically active chemicals in street drug dosage forms. Using these approaches, we have identified the synthetic cannabinoids JWH‐018, JWH‐019, JWH‐073, JWH‐081, JWH‐200, JWH‐210, JWH‐250, CP47,497 (C=8) (cannabicyclohexanol), RCS‐4, RCS‐8, AM‐2201, and AM‐694 in various commercially available products. Other noncannabinoid drugs including mitragynine have also been detected. Typical concentrations of drug in the materials are in the range 5–20 mg/g, or 0.5–2% by weight for each compound, although many products contained more than one drug.  相似文献   

5.
The objective of this study was to compare urinary excretion patterns of two cannabinoid metabolites in subjects with a history of chronic marijuana use. The first metabolite analyzed was nor-9-carboxy-delta9-tetrahydrocannabinol (delta9-THC-COOH), the major urinary cannabinoid metabolite that is pharmacologically inactive. The second metabolite 11-OH-delta9-THC is an active cannabinoid metabolite and is not routinely measured. Urine specimens were collected from four subjects on 12-20 occasions > or = 96 h apart in an uncontrolled clinical setting. Creatinine was analyzed in each urine specimen by the colorimetric modified Jaffé reaction on a SYVA 30R biochemical analyzer. All urine specimens analyzed for 11-OH-delta9-THC had screened positive for cannabinoids with the EMIT II Plus cannabinoids assay (cut-off 50 ng/mL) on a SYVA 30R analyzer and submitted for delta9-THC-COOH confirmation by GC-MS (cut-off concentration 15 ng/mL). Eleven-OH-delta9-THC was measured by GC-MS with a cut-off concentration of 3 ng/mL. Both GC-MS methods for cannabinoid metabolites used deuterated internal standards for quantitative analysis. The mean (range) of urinary delta9-THC-COOH concentration was 1153 ng/mL (78.7-2634) with a cut-off of 15 ng/mL. The mean (range) of delta9-THC-COOH/creatinine ratios (ng/mL delta9-THC-COOH/mmol/L creatinine) was 84.1 (8.1-122.1). The mean (range) urinary of 11-OH-delta9-THC concentration was 387.6 ng/mL (11.9-783) with a cut-off of 3 ng/mL, and the mean (range) of 11-OH-delta9-THC/creatinine ratio (ng/mL 11-OH-delta9-THC/mmol/L creatinine) was 29.7 (1.2-40.7). Of the 63 urine specimens submitted for delta9-THC-COOH confirmation by GC-MS, 59/63 urine specimens (94%) were positive for delta9 -THC-COOH and 51/63 (81%) were positive for 11-OH-delta9-THC. Overall, the concentrations of 11-OH-delta9-THC in urine specimens collected > or = 96 h apart were lower than delta9-THC-COOH concentrations in 50/51 of the urine specimens in this population. Further urinary cannabinoid excretion studies are needed to assess whether 11-OH-delta9-THC analyses have a role when assessing previous marijuana or hashish use in chronic users whose urine specimens remain positive for delta9-THC-COOH for an extended period of time after last drug use.  相似文献   

6.
Marijuana, a drug derived from the Cannabis sativa L. plant, is the world's most consumed illicit drug. In this paper, a total of 156 marijuana samples seized in the state of Espírito Santo (ES), Brazil were studied and analysed by proton nuclear magnetic resonance (1H NMR) spectroscopy to identify the major cannabinoids present. A crude extract of all samples was purified using high performance liquid chromatography so that these compounds could serve as reference substances. Nine fractions were obtained and analysed by 1H NMR and gas chromatography–mass spectrometry (GC–MS), with five presented cannabinoids. ?9-THC (Δ9-trans-tetrahydrocannabinol), ?9-THCA (?9-tetrahydrocannabinolic acid), ?8-THC (?8-tetrahydrocannabinol), 11-hydroxycannabinol, CBV (cannabivarin), and CBN (cannabinol) were found, and their chemical structures were confirmed by GC–MS. The latter compound was obtained with high purity (≈100%), while the others were obtained as less complex mixtures with purity higher than 75% (except for Δ8-THC). Principal component analysis (PCA) was used on the 1H NMR spectra of the 156 samples, and it was found that the samples were grouped according to the months, differentiating into two groups (from July 2014 to January 2015 and from February 2015 to July 2015), where non-grouping was observed from four macro-regions of the ES state (North, Central, Metropolitan, and South). The chemical profile of the seized samples was correlated to the 1H NMR spectrum of an isolated CBN sub-fraction, in which the group formed by samples seized in the year 2015 presented lower CBN content in the chemical composition. From the PCA score plot, two groups of samples were confirmed using the partial least squares discriminant analysis and orthogonal projections to latent structures classification methods.  相似文献   

7.
The three major cannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN) were identified and determined quantitatively using a GCD (GC–EI) instrument, in samples of illicit herbal cannabis, seized by Customs and Police authorities in two areas of Greece (Ipiros and Lakonia) during 1996. These samples were sent by the above authorities to the Department of Forensic Medicine and Toxicology, University of Athens, for forensic chemical analysis. The cannabinoid content of these samples led to the classification of cannabis into two chemical phenotypes and to the differentiation of resinous and textile plants by using three different classification indexes. The cannabinoid content of cannabis plants is of forensic value in determining the geographical origin of cannabis samples, since it can be used for their classification, allocating this way the area of cultivation of the relative plants. The forensic aspects of cannabis classification are discussed.  相似文献   

8.
目的使用实时直接分析-串联质谱,建立快速检测人血中的JWH-018、JWH-250和AM-2201的方法。方法用乙腈-甲醇(4:1)沉淀蛋白的方法对血样进行简单前处理,采用DART 12Dip-it自动进样系统,以正离子、MRM模式进行分析。结果血液中JWH-018、JWH-250、AM-2201可以得到有效检测,在0.02-5.00μg/m L线性关系良好,相关系数均大于0.99,检出限分别为0.016μg/m L,0.003μg/m L和0.017μg/m L,日内、日间RSD均小于15%。结论本文所建方法灵敏度高,准确性较好,方法省时省力,可用于实际案例血液中合成大麻素JWH-018、JWH-250、AM-2201的分析。  相似文献   

9.
目的研究被我国《非药用类麻醉药品和精神药品列管办法》列入管制的合成大麻素JWH-122的高效液相色谱分析方法。方法以甲醇-去离子水(50%-50%)为流动相进行梯度洗脱,考查有机相初始浓度、梯度陡度、柱温、流速等色谱条件及检测波长,确定最优实验条件,在优化条件下对线性范围及专属性进行实验,通过实际样本检测对所建方法进行验证。结果紫外光谱检测波长221nm、有机相初始浓度为70%、梯度陡度为0.5%/min、流速1.2ml/min、柱温30℃条件下JWH-122在0.002mg/ml-0.1mg/ml范围内线性良好,检出限(S/N≥3)为0.1μg/ml;实际样本检测表明,优化条件下JWH-122能与样本中其它组分很好分离。结论该方法具有快速、灵敏、准确、分离效果好的优点,适用于新型香料毒品中合成大麻素JWH-122的分析检测。  相似文献   

10.
The 'herbal highs' market continues to boom. The added synthetic cannabinoids are often exchanged for another one with a high frequency to stay at least one step ahead of legal restrictions. While most of these substances were synthesized for pharmaceutical purposes and have been described in the scientific literature before, others originate from clandestine laboratories supplying this lucrative market. In this paper, the identification and structure elucidation of two synthetic cannabinoids is reported. The first compound, 1-[(5-fluoropentyl)-1H-indol-3yl]-(4-methylnaphthalen-1-yl)methanone, was found along with AM-2201 in a 'herbal mixture' obtained via the Internet. For isolation of the substance from the mixture, a newly developed flash chromatography method was used providing an inexpensive and fast way to gain pure reference substances from 'Spice' products for the timely development or enhancement of analytical methods in the forensic field. The second substance, 4-fluoronaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-412) was seized by German authorities as microcrystalline powder, making it very likely that it will be found in 'herbal mixtures' soon.  相似文献   

11.
CP 47,497, a potent cannabinoid receptor type 1 agonist, is the main active ingredient in the herbal mixture “Spice” sold in European countries. The illegal use of “Spice” for its psychoactive effects has become a social issue. In this study, the in vitro metabolism of CP 47,497 was investigated in human liver microsomes to characterize the metabolic fate of CP 47,497. CP 47,497 was incubated with human liver microsomes, and the reaction mixture was analyzed using liquid chromatography‐tandem mass spectrometry. A total of eight metabolites were detected in human liver microsomes and structurally characterized based on mass spectral data. The main metabolic pathways involved hydroxylations or oxygenations. The identified metabolites were mono‐oxygenated metabolites (M1 and M4), mono‐hydroxylated metabolites (M3, M5, M6, M7, and M8), and a di‐oxygenated metabolite (M2). The detection of these metabolites could confirm the presence of CP 47,497 in biological samples; therefore, collectively, they would be excellent indicators of “Spice” drug abuse.  相似文献   

12.
The easily available "legal highs", which are products containing psychoactive substances, such as cathinones, piperazines and synthetic cannabinoids, are abused by adolescents in Poland and in the world as alternatives to classic drugs, such as amphetamines or marijuana. The majority of these potentially dangerous substances are still legal and they are associated with a risk of severe poisoning or even death, and provide new challenges in clinical and forensic toxicological practice. Investigations in the field of "designer drugs" may be well illustrated by the case of a suicide of a 21-year old male who ingested a specified dose of a preparation called "Amphi-bi-a" that contains bk-MBDB, chemically 2-methylamino-1-(3,4-methylenedioxyphenyl) butan-1-one, which belongs to the cathinone group, as a synthetic euphoric empathogen and psychoactive stimulant that is chemically similar to MDMA. It is one of more common components of "legal highs" examined in Poland and other countries. The documentation of the case includes a clinical assessment of the patient's health status performed during his almost 4-h hospitalization before death, autopsy and histological examinations supported by toxicological findings revealing bk-MBDB at extremely high concentrations (at 20mg/l in the blood and 33mg/kg in the liver); hence, this body of evidence contributes to knowledge in the field of "designer drugs". Inventions of designers of new psychoactive xenobiotics, which are much in demand, especially in view of the dynamic Internet marketing, which drums up narcobusiness, must be balanced by a national strategy developed by medical, legal and educational circles in the modern civilized world in order to prevent the spreading of the phenomenon.  相似文献   

13.

Introduction

In the years 1997–2007 in the Forensic Medicine Department, Silesian University of Medicine, Katowice a total of 785 blood samples collected from drivers being the perpetrators of road accidents was tested for the presence of psychoactive drugs.

Methods

The studies took advantage of FPIA (Abbott), ELISA (Neogen), LC–MS and GC FID.

Results

21% of tested samples were positive. In the blood of the driver cannabinoids, amphetamine and its derivatives were most frequently found. Moreover, individual opium alkaloids, their combinations with barbiturates, benzodiazepines or amphetamine, benzodiazepine derivatives (isolated cases), drugs of benzodiazepine group in combination with barbiturates, tramadol or tricyclic anti-depressants (isolated cases), carbamazepine, phenotiazine, cocaine, dibenzepine, benzene, toluene and acetone were determined.

Conclusion

The obtained results showed cannabinoids and amphetamine derivatives to be the most frequent whereas opium alkaloids, barbiturates and benzodiazepines rather rare psychoactive drugs found in the tested blood samples of the drivers involved in the road accidents. The authors suggest screening psychoactive drugs not only in drivers involved in road accidents but also those put through the routine road check procedures. While giving opinions on the influence of the above mentioned drugs on the psychophysical efficiency of road traffic users, drugs and compounds which are not subject to legal control but have an effect on the human psychomotor efficiency and thus, enhance the risk of the road accident should be also taken into account.  相似文献   

14.
Synthetic cannabinoids are sprayed onto plant material and smoked for their marijuana‐like effects. Clandestine manufacturers modify synthetic cannabinoid structures by creating closely related analogs. Forensic laboratories are tasked with detection of these analog compounds, but targeted analytical methods are often thwarted by the structural modifications. Here, direct analysis in real time coupled to accurate mass time‐of‐flight mass spectrometry (DART‐TOF‐MS) in combination with liquid chromatography quadruple time‐of‐flight mass spectrometry (LC‐QTOF‐MS) are presented as a screening and nontargeted confirmation method, respectively. Methanol extracts of herbal material were run using both methods. Spectral data from four different herbal products were evaluated by comparing fragmentation pattern, accurate mass and retention time to available reference standards. JWH‐018, JWH‐019, AM2201, JWH‐122, 5F‐AKB48, AKB48‐N‐(4‐pentenyl) analog, UR144, and XLR11 were identified in the products. Results demonstrate that DART‐TOF‐MS affords a useful approach for rapid screening of herbal products for the presence and identification of synthetic cannabinoids.  相似文献   

15.
The unusual concentration of cannabinoids recently found in marijuana samples submitted to the forensic laboratory for chemical analysis prompted an investigation into whether genetic modifications have been made to the DNA of Cannabis sativa L. to increase its potency. Traditional methods for the detection of genetically modified organisms (GMO) were used to analyze herbal cannabis preparations. Our analyses support the hypothesis that marijuana samples submitted to forensic laboratories and characterized by an abnormal level of Δ(9)-THC are the product of breeding selection rather than of transgenic modifications. Further, this research has shown a risk of false positive results associated with the poor quality of the seized samples and probably due to the contamination by other transgenic vegetable products. On the other hand, based on these data, a conclusive distinction between the hypothesis of GMO plant contamination and the other of genetic modification of cannabis cannot be made requiring further studies on comparative chemical and genetic analyses to find out an explanation for the recently detected increased potency of cannabis.  相似文献   

16.
Extracts of 100 plant-like or resinous materials were analyzed for CBD, CBC, delta 9-THC, and CBN by GC using two different column packings and by GC-MS. Our independent identification of these cannabinoids confirmed those of other forensic science analysts who used microscopic examination, the Duquenois-Levine color test, and TLC for their analyses of the same samples. The identifications of cannabinoids by forensic acience analysts using TLC were corroborated by GC-MS analysis of hexane extracts of appropriate chromatogram spots.  相似文献   

17.
The analysis of 35,312 cannabis preparations confiscated in the USA over a period of 18 years for delta-9-tetrahydrocannabinol (delta9-THC) and other major cannabinoids is reported. Samples were identified as cannabis, hashish, or hash oil. Cannabis samples were further subdivided into marijuana (loose material, kilobricks and buds), sinsemilla, Thai sticks and ditchweed. The data showed that more than 82% of all confiscated samples were in the marijuana category for every year except 1980 (61%) and 1981 (75%). The potency (concentration of delta9-THC) of marijuana samples rose from less than 1.5% in 1980 to approximately 3.3% in 1983 and 1984, then fluctuated around 3% till 1992. Since 1992, the potency of confiscated marijuana samples has continuously risen, going from 3.1% in 1992 to 4.2% in 1997. The average concentration of delta9-THC in all cannabis samples showed a gradual rise from 3% in 1991 to 4.47% in 1997. Hashish and hash oil, on the other hand, showed no specific potency trends. Other major cannabinoids [cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC)] showed no significant change in their concentration over the years.  相似文献   

18.
A simple and sensitive assay for the cannabinoids is presented using a dabsylation procedure. Dabsyl derivatives of delta 9-tetrahydrocannabinol (delta 9-THC) and cannabinol (CBN) were prepared by reacting with 4-dimethylaminoazobenzene-4'-sulfonyl chloride (dabsyl chloride) in acetone in the presence of sodium carbonate-sodium bicarbonate buffer (pH 10). Crystalline dabsylcannabinoids gave intense absorption in the visible region. With these derivatives, analysis by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) were tested. These techniques gave good separation and nanogram detection of dabsyl-THC and -CBN by using n-hexane-ethyl acetate-diethylamine (20:5:1) for TLC and MeOH--H2O (95:5) at 450 nm for HPLC.  相似文献   

19.
The usage of herbal incenses containing synthetic cannabinoids has caused an increase in medical incidents and triggered legislations to ban these products throughout the world. Law enforcement agencies are experiencing sample backlogs due to the variety of the products and the addition of new and still‐legal compounds. In our study, proton nuclear magnetic resonance (NMR) spectroscopy was employed to promptly screen the synthetic cannabinoids after their rapid, direct detection on the herbs and in the powders by direct analysis in real time mass spectrometry (DART‐MS). A simple sample preparation protocol was employed on 50 mg of herbal sample matrices for quick NMR detection. Ten synthetic cannabinoids were discovered in fifteen herbal incenses. The combined DART‐MS and NMR methods can be used to quickly screen synthetic cannabinoids in powder and herbal samples, serving as a complementary approach to conventional GC‐MS or LC‐MS methods.  相似文献   

20.
目的 建立基于红外光谱(fourier transform infrared,FT-IR)、气相色谱-质谱联用(gas chromatography-mass spectrometry,GC-MS)、高分辩质谱(high resolution mass spectrometer,HRMS)和核磁共振波谱(nuclear...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号