首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Automated scanning electron microscopy coupled with image analysis and X-ray micro analysis was used to characterize a variety of gunshot residue (GSR) samples. More than 500 rounds of commercially available ammunition and six different types of hand gulls were used in the study of 17 GSR and 19 reference specimens. The individual particle X-ray composition was determined for 12 different elements. Elemental composition of GSR particles was highly variable but consistent with compounds mixed into or associated with a barium oxide matrix. When present in a specimen, GSR could be adequately characterized with automated procedures in less than an hour by restricting analyses to features larger than 2 microm. In "clean" samples, a higher resolution particle search was required to avoid reporting false negatives. Careful control of the back scattered electron signal strength threshold, by reference to a standard, was needed to ensure both time-efficient and accurate analyses. Samples collected from non-shooting subjects. active in a physical environment which contained firearms discharge residue were seen to be easily contaminated by sub-micron GSR particles.  相似文献   

2.
Gunshot residue (GSR) from the discharge of ammunition can provide crucial information in reconstructing criminal cases. Traditional primers create particles of heavy metals such as lead, barium, and antimony. In forensic laboratories, automatic inorganic particle detection is performed by scanning electron microscopy (SEM), using the backscattered electron signal to search for bright residues among the many darker environmental particles, due to higher electron density of the former. Some innovative primers, indicated as heavy metal‐free (HMF), produce a residue of elements with atomic numbers below 21, urgently demanding new detecting solutions. For the first time, residues from Sellier & Bellot Nontox HMF primer are demonstrated to emit visible light under electron beam stimulation in a SEM. Cathodoluminescence is then proposed as a promising tool to both detect and characterize residues in forensic cases involving HMF primers, with minor changes to traditional analytical apparatus used for inorganic GSR analysis.  相似文献   

3.
Abstract:  Automated scanning electron microscopy with energy dispersive spectroscopy has been used to analyze airbag residue particles. Analysis of airbag residue from some passenger side airbags revealed some residue particles which are consistent with gunshot residue (GSR) samples. The source of these particles was determined to be percussion primers used to initiate the chemical reaction for deployment. This article identifies some vehicles which contain this type of airbag and demonstrates the types of particles which could be misidentified as being GSR. The low numbers of GSR particles in among the large particle populations of zirconium and/or copper–cobalt particles, which are clearly airbag residue, allow the trained analysts to distinguish the correct source of this residue. Particles containing high aluminum levels, elevated levels of allowable elements in GSR particles, or the presence of elements that are rare in GSR particles stand out as indications that the particles are not GSR in origin. This study serves as a guide to analysts who perform particle analysis in forensic investigations.  相似文献   

4.
In 0.22 caliber rimfire ammunition, the primer often contains lead or lead and barium compounds. As residues from these primers do not contain lead, barium, and antimony, they cannot be uniquely classified as gunshot residue (GSR) under ASTM designation E 1588-95. In many types of 0.22 caliber rimfire ammunition, the cartridge contains a primer sensitized with glass. In this paper we describe a previously unreported type of GSR particle consisting of glass fused with other primer components. As there appear to be few potential environmental or occupational sources of particles composed of lead and barium compounds fused to glass, particularly borosilicate glass, these particles may have high evidential value. Scanning electron microscopy with energy dispersive X-ray detection (SEM-EDX) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were evaluated for the characterization of glass-containing GSR particles. The occurrence of glass-containing GSR particles was established in the residue from various brands of 0.22 caliber ammunition, and several sub-types were identified.  相似文献   

5.
An X-ray color imaging system was used to study primer particles and fired bullets from different .22 rimfire ammunition. The technique proved to be very useful, allowing a ready, concomitant analysis of the morphology of primer particles and their elemental composition. The investigation of the bottom of fired bullets showed that antimony present in the bullet alloy is not evenly distributed, but organized in plates made up of almost pure antimony. Moreover, particles and other traces adherent to lead bottomed bullets containing elements different from lead, therefore, useful to the understanding of primer composition are readily and easily detected.  相似文献   

6.
A review of the scientific papers published on inorganic gunshot residue (GSR) analysis permits to study how the particle analysis has shown its capability in detection and identification of gunshot residue. The scanning electron microscope can be the most powerful tool for forensic scientists to determine the proximity to a discharging firearm and/or the contact with a surface exposed to GSR. Particle analysis can identify individual gunshot residue particles through both morphological and elemental characteristics. When particles are detected on the collected sample, the analytical results can be interpreted following rules of a formal general interpretative system, to determine whether they come from the explosion of a primer or from other possible sources. The particles on the sample are compared with an abstract idea of "unique" GSR particle produced by the sole source of the explosion of a primer. "Uniqueness" is not the only problem related to GSR detection and identification for a forensic scientist. With "not-unique" particles interpretation of results is extremely important. The evidential strength of "not-unique" particles can increase with a more fruitful interpretative framework based on Bayes rule. For the assessment of the value of a GSR in linking a suspect and a crime, it is important to compare two hypothesis: the first can be that of the evidence if the suspect has been shooting in a specific situation, the second that of the evidence if the suspect was not involved in this shooting. This case specific or case-by-case approach is closer to what the court is interested in. The authors consider that a "case-by-case" approach should be followed whenever possible. Research of models and data such as those developed in other trace evidence material (fibres, glass, etc.) using a Bayesian approach is suggested in the interpretation of GSR.  相似文献   

7.
Detecting the use of handguns via the determination of the organic additives in smokeless gunpowder residues (OGSR) presents a promising alternative to primer metal residue analysis. Compositional analysis of the gunpowder additives nitroglycerin, diphenylamine, and ethyl centralite provides information that can associate residue samples with unfired gunpowder. We evaluated the composition of seven reloading smokeless gunpowders, both in bulk and as single particles, by ultrasonic solvent extraction/capillary electrophoresis. Handgun-fired residues obtained from three common weapon calibers loaded with the known reloading powders were compared with the unfired powders. In general, the composition of the residues was similar to that found in the unfired powders. For double-base powders, comparing the ratio of the propellant (P) to the total amount of stabilizer (S) for both residue and gunpowder samples proved to be a useful measurement for identification. This P/S ratio demonstrated that the additives in the residues did not greatly change relative to the unfired powder, providing a useful indicator to aid in forensic powder and residue evaluation.  相似文献   

8.
Pyrotechnic reaction residue particle (PRRP) production, sampling and analysis are all very similar to that for primer gunshot residue. In both cases, the preferred method of analysis uses scanning electron microscopy to locate suspect particles and then uses energy dispersive x-ray spectroscopy to characterize the particle's constituent chemical elements. There are relatively few times when standard micro-analytical chemistry performed on pyrotechnic residues may not provide sufficient information for forensic investigators. However, on those occasions, PRRP analysis provides a greatly improved ability to discriminate between materials of pyrotechnic origin and other unrelated substances also present. The greater specificity of PRRP analysis is the result of its analyzing a large number of individual micron-sized particles, rather than producing only a single integrated result such as produced using standard micro-analytical chemistry. For example, PRRP analyses are used to demonstrate its ability to successfully (1) discriminate between pyrotechnic residues and unrelated background contamination, (2) identify that two different pyrotechnic compositions had previously been exploded within the same device, and (3) establish the chronology of an incident involving two separate and closely occurring explosions.  相似文献   

9.
In light of past research being targeted to find specific particles which may be similar to gunshot residue (GSR), this project was formulated to detect any possible particulate by random particle fallout onto substrates at firework displays and to assess the impact this may have on GSR evidence. Firework residue was collected at a display site, from amongst spectators as well as from the author's hair 90min after the display. SEM-EDX analysis has detected such particulate in all three scenarios, with the firework particle population at large providing a solid ground for discrimination from GSR. Wind dispersal was found to decrease the particle population and subsequently, the latter's discriminatory power. Some particles, if treated individually were found to be indistinguishable from GSR. Findings also include residues which may mimic strontium based GSR as well as GSR which may be mixed with that from previous firings. The continuous changes made to primer and propellant compositions by manufacturers also call for greater consideration when classifying particles as originating from pyrotechnic devices. Furthermore, authorities such as police forces should be made more aware about the incidence of such particle transfer in firework related periods.  相似文献   

10.
The measurement of the organic additives in smokeless gunpowder is an attractive approach for the detection of handgun use because it provides compositional information that can help associate residues and unfired gunpowder. We investigate several factors that will be required to advance the characterization of organic gunshot residue (OGSR) as a useful forensic tool, including evaluating residue contamination from previously fired ammunition, particle-to-particle compositional variability, and compositional features resulting from the type of firing primer used. Using ammunition loaded with known smokeless powders containing different stabilizers, a sequence of shots was fired from a .357 magnum revolver, and the muzzle exit residues were collected. Compositional analysis of the residues, both in bulk and as single particles, showed only a trace of the previously fired powder in the first shot and none in subsequent shots. In an additional experiment testing conventional leaded and the new lead-free firing primers, the OGSR composition was found not to depend on the primer type.  相似文献   

11.
We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.  相似文献   

12.
Today the method commonly used for detecting gunshot residue is through the combined use of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). In recent years, this same methodology began to find use in detecting and characterizing pyrotechnic reaction residue (PRR) particles whether produced by explosion or burning. This is accomplished by collecting particulate samples from a surface in the immediate area of the pyrotechnic reaction. Suspect PRR particles are identified by their morphology (typically 1 to 20 microm spheroidal particles) using an SEM; then they are analyzed for the elements they contain using X-ray EDS. This can help to identify the general type of pyrotechnic composition involved.  相似文献   

13.
Detection of gunshot residue (GSR) is an arduous task for investigators. It is often accomplished with chemical tests, which can reveal elements and ions indicating the presence of GSR, but are likely to cause physical alteration to the pattern. In this study, the Spex Forensics Mini‐CrimeScope MCS 400, along with 16 accompanying wavelength filters, was applied to various GSR patterns and target types. Three dark shirt materials, four ammunition calibers, and eight ammunition manufacturers, along with the primer residue of the different manufacturer ammunitions were tested. Results indicate the alternate light source wavelength of 445 nm to be the optimal setting. In addition, target material plays a large role in the preservation of GSR patterns as particles burn. Furthermore, it can be extrapolated that residue, observed from a full round and firing distance of six inches, is mostly composed of unburnt gunpowder residue, not primer residue.  相似文献   

14.
The organic components of gunshot residue (OGSR, also called firearms discharge residue (FDR) or cartridge discharge residue (CDR)) have been studied and discussed in the literature. These residues, consisting of particulates such as burned and unburned powder as well as molecular compounds, are rarely used in casework except for purposes such as shooting reconstructions. Molecular compounds that survive the firing event or that are created as a result of the firing event could, with focused research and development, open a new avenue for forensic gunshot residue analysis. In this study, the persistence of organic gunshot residue was evaluated using diphenylamine (DPA) as a target analyte and ion mobility spectrometry (IMS) as the detection system. Samples were collected from hands using a solvent swabbing technique and the swab was analyzed using direct thermal desorption for sample introduction into the IMS. OGSR was found to persist for at least 4h. Although DPA is a widely used industrial compound, analysis of numerous blank and background samples (n~100) did not show any significant response for DPA using this detector. Variations were noted among individuals and as such, the data set does not support estimation of a half-life as has been done for traditional primer residues. No secondary transfers were observed, suggesting the possibility of skin adhesion via interactions between the lipophilic organic compounds and skin lipids. IMS proved valuable as a means of generating patterns for forensic pattern matching and shows promise as a screening tool applied to firearms discharge.  相似文献   

15.
The possibility of detection of lead-antimony-barium aggregates from non-firearm sources is confirmed according to the tests performed on brake pads, and firework and automobile workers. Moreover, information on particles taken from cartridge cases shows the relative feeble importance of the morphology in distinguishing gunshot residues (GSRs). Furthermore, also the presence in the spectrum of other elements (e.g., iron) is not so conclusive. In this panorama, the possibility of discriminating gunshot residue particles from other non-firearm lead-antimony-barium aggregates is investigated: the proposed method is based on X-ray mapping technique--currently applied used in Reparto Carabinieri Investigazioni Scientifiche in Rome, the forensic service of Italian Carabinieri--according to which the spatial distribution of the emission energy of each element of the sample is pictured. Gunshot residues present the same lead-antimony-barium distribution (or at least the same antimony-barium distribution with lead nodules), as some other environmental occupational aggregates do not (different plaques of lead, antimony, and barium). So, X-ray mapping technique can offer a new fundamental evaluation parameter in analysis of gunshot residues with scanning electron microscopy/energy-dispersive (SEM/EDS) spectrometry, and new standards could be considered.  相似文献   

16.
We have used a combination of lead isotopes and scanning electron microscopy to determine the relationships between different exhibits in a murder case. Samples involved lead projectiles removed from the deceased's head and a pillow, lead-rich scrapings and particles (gunshot residues) from spent cartridges and a silencer, and particles from a pillowcase. The lead projectiles had the same isotopic composition. with the lead being derived from the same dominantly geologically old source(s). The lead smear from the silencer had the same isotopic composition as the projectiles, and the lead was probably from the same source. The particles from the spent cartridges had varying elemental compositions ranging from PbO to PbCuZn +/- Ba with or without Si and are consistent with derivation from the primer. The lead isotopic compositions of the particles from the spent cartridges show some variations, but these are markedly different from those of the projectiles, indicating lead from a mixture of geologically old and geologically young lead. The particles from the pillowcase were extremely small (usually <50 microm size) and showed varying isotopic compositions, some consistent with the gunshot residue from the cartridges. As the exhibits had been handled extensively prior to the present investigation, including some being sent to North America, there is a high likelihood that handling was not done in clean room environments and may have been contaminated. In this instance, as we were concerned about contamination, especially of the pillowcase, we felt contamination negated use of the results for assistance in proving the innocence or guilt of the accused. A combination of high-precision lead isotope measurements with scanning electron microscopy provides a powerful tool for forensic investigations if precautions are taken in handling the exhibits.  相似文献   

17.
Gunshot Residue (GSR) produced by the discharge of a firearm often provides very useful information in criminal investigations in cases involving the use of firearms. Scanning Electron Microscopy equipped with an Energy Dispersive X-ray Spectrometer (SEM-EDS) is typically used worldwide to visualize micrometric particles constituting GSR and to analyse their elemental composition. The 2017 ASTM Standard guide for gunshot residue analysis by scanning electron microscopy/energy dispersive X-ray spectroscopy specifies that “Particles classified as characteristic of GSR will have one of the following elemental compositions: Lead, antimony, barium; Lead, barium, calcium, silicon, tin”. For the first time, the presence of an additional element, such as Sn, plays a key role in ASTM particle classification. It is known that some ammunitions, used for pistols, revolvers and rifles, contain tin foil discs for sealing the primer mixture into the cup, resulting in GSR particles containing Sn. The authors faced some cases in which Sn was unexpectedly found in GSR particles from a 0.22 Long Rifle derringer and from some 12 gauge shotguns. No tin foil discs are used in rimfire ammunitions and there is no published evidence of tin foil discs in shotshell ammunitions. Following a “case by case” approach, experimental research has been carried out to explain how Sn can be present in GSR particles when the last discharged cartridge also does not contain any Sn either in components and in the explosive charges.Moreover, the use of Particle Induced X-ray Emission (PIXE) showed the capability to overcome overlap ambiguity of Sb and Sn peaks in the X-ray spectra, being a possible key issue in real shooting cases if Sn quantities are below the lower limit of SEM detection, especially when Sb is also present.  相似文献   

18.
With the development of highly sensitive drug testing technologies that can detect a minute quantity of a prohibited substance in an athlete's body, accidental contamination through contact with publicly circulated materials can more readily result in a "positive" reading. To discharge the burden of a positive finding, the athlete must show the "factual circumstances" in which the prohibited substance entered his/her system. In cases of accidental contamination, the athlete generally cannot even know how it occurred, as there are many known and unknown possible sources of contamination. When an athlete does give an account, it cannot generally be proven or disproven. Outside the realm of sports anti-doping, the use of scientifically established thresholds for drug testing is standard practice. Basic logic dictates that thresholds would enable one to differentiate between relevant and irrelevant amounts in the context of a possible sports doping offence. Such a threshold should be functionally motivated, i.e., enable the differentiation between relevant and irrelevant quantities in the context of a possible doping offence, rather than based on instrument performance limits.  相似文献   

19.
A review of the literature concerning the fate and behavior of gunshot residue (GSR) is presented. A number of concomitant parameters including firearm and ammunition type, plume and GSR material characteristics, travel distances, chemical composition and GSR morphology are critically discussed in relation to their effects on the distribution and deposition, transfer and persistence processes of GSR. The underlying mechanisms associated with such processes are also considered. Knowledge of these processes on GSR materials could provide valuable information concerning scene preservation and subsequent forensic sampling. The number of GSR particles deposited can vary significantly with each firearm discharge, highlighting the potential to produce distinctive data in each individual case. With the continual development and compositional changes of new ammunition types, further evaluation of the effect these processes may have on GSR evidence and their possible influence on the interpretation of the analytical results should be given due consideration.  相似文献   

20.
The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号