首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The disposition in mice of the cannabimimetics JWH-018 and JWH-073 in blood and brain following inhalation of the smoke from the herbal incense product (HIP) "Magic Gold" containing 3.6% JWH-018, 5.7% JWH-073 and less than 0.1% JWH-398 (w/w) is presented. Specimens were analyzed by HPLC/MS/MS. The validation of the method is also presented. Five C57BL6 mice were sacrificed 20 min after exposure to the smoke of 200 mg of "Magic Gold" and a second set of five exposed mice were sacrificed after 20 h. Twenty minutes after exposure to "Magic Gold" smoke, blood concentrations of JWH-018 ranged from 42 to 160 ng/mL (mean: 88 ng/mL ± 42) and those of JWH-073 ranged from 67 to 244 ng/mL (mean: 134 ng/mL ± 62). Brain concentrations 20 min after exposure to "Magic Gold" smoke for JWH-018 ranged from 225 to 453 ng/g (mean: 317 ng/g ± 81) and those of JWH-073 ranged from 412 to 873 ng/g (mean: 584 ng/g ± 163). Twenty hours after exposure to "Magic Gold" smoke, JWH-018 was detected and quantified in only two of the five blood samples. Blood concentrations of JWH-018 were 3.4 ng/mL and 9.4 ng/mL. JWH-073 was detected in only one blood specimen 20 h after exposure at 4.3 ng/mL. Brain concentrations 20 h post exposure for JWH-018 ranged from 7 to 32 ng/g (mean: 19 ng/g ± 9). JWH-073 was not detected in 20 h post exposure brain specimens. JWH-398 was not detected in any of the blood or brain samples. The disposition data presented with the limited data available from human experience provide reasonable expectations for forensic toxicologists in JWH-018 or JWH-073 cases. As with THC after smoking marijuana, blood and brain concentrations of JWH-018 and JWH-073 after HIP smoking can be expected to rise initially to readily detected values, and then drop dramatically over the next few hours to several ng/mL or ng/g, and finally to be at extremely low or undetectable concentrations by 24h apparently due to extensive biotransformation, and redistribution to body fat.  相似文献   

2.
目的研究被我国《非药用类麻醉药品和精神药品列管办法》列入管制的合成大麻素JWH-122的高效液相色谱分析方法。方法以甲醇-去离子水(50%-50%)为流动相进行梯度洗脱,考查有机相初始浓度、梯度陡度、柱温、流速等色谱条件及检测波长,确定最优实验条件,在优化条件下对线性范围及专属性进行实验,通过实际样本检测对所建方法进行验证。结果紫外光谱检测波长221nm、有机相初始浓度为70%、梯度陡度为0.5%/min、流速1.2ml/min、柱温30℃条件下JWH-122在0.002mg/ml-0.1mg/ml范围内线性良好,检出限(S/N≥3)为0.1μg/ml;实际样本检测表明,优化条件下JWH-122能与样本中其它组分很好分离。结论该方法具有快速、灵敏、准确、分离效果好的优点,适用于新型香料毒品中合成大麻素JWH-122的分析检测。  相似文献   

3.
Several synthetic cannabinoids have recently been distributed as psychoactive adulterants in many herbal products on the illegal drug market around the world. However, there is little information on pharmacology and toxicology of such compounds. Although Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a psychoactive cannabinoid of marijuana, was reported to affect electroencephalograms (EEG) of rats, the effects of synthetic cannabinoids are unknown. We examined the pharmacological activities of three synthetic cannabinoids; cannabicyclohexanol (CCH), CP-47,497 and JWH-018; by analyzing EEG power spectra and locomotor activity after intraperitoneal administration to rats and compared them with those of Δ(9)-THC. The three compounds significantly increased the EEG power in the frequency range of 5.0-6.0 Hz for the first 3h, while Δ(9)-THC decreased the power spectra in the wide range of 7.0-20.0 Hz during the first hour. These results indicate that the effect of the three compounds on EEG is different from that of Δ(9)-THC. Additionally, CCH, CP-47,497 and JWH-018 significantly decreased the locomotor activity for 11.5h, 11h and 4.5h, respectively, after administration which was longer than that of Δ(9)-THC (3.5h). Furthermore, all three compounds significantly reduced the total amounts of locomotor activity during a 3-h, 6-h and 12-h period after injection, whereas no statistical difference was observed for the Δ(9)-THC injection. Among the three compounds, CCH and CP-47,497 exerted a longer duration of the change in the EEG power spectra and suppression of the locomotor activity than JWH-018.  相似文献   

4.
The 'herbal highs' market continues to boom. The added synthetic cannabinoids are often exchanged for another one with a high frequency to stay at least one step ahead of legal restrictions. While most of these substances were synthesized for pharmaceutical purposes and have been described in the scientific literature before, others originate from clandestine laboratories supplying this lucrative market. In this paper, the identification and structure elucidation of two synthetic cannabinoids is reported. The first compound, 1-[(5-fluoropentyl)-1H-indol-3yl]-(4-methylnaphthalen-1-yl)methanone, was found along with AM-2201 in a 'herbal mixture' obtained via the Internet. For isolation of the substance from the mixture, a newly developed flash chromatography method was used providing an inexpensive and fast way to gain pure reference substances from 'Spice' products for the timely development or enhancement of analytical methods in the forensic field. The second substance, 4-fluoronaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-412) was seized by German authorities as microcrystalline powder, making it very likely that it will be found in 'herbal mixtures' soon.  相似文献   

5.
Synthetic cannabinoids are sprayed onto plant material and smoked for their marijuana‐like effects. Clandestine manufacturers modify synthetic cannabinoid structures by creating closely related analogs. Forensic laboratories are tasked with detection of these analog compounds, but targeted analytical methods are often thwarted by the structural modifications. Here, direct analysis in real time coupled to accurate mass time‐of‐flight mass spectrometry (DART‐TOF‐MS) in combination with liquid chromatography quadruple time‐of‐flight mass spectrometry (LC‐QTOF‐MS) are presented as a screening and nontargeted confirmation method, respectively. Methanol extracts of herbal material were run using both methods. Spectral data from four different herbal products were evaluated by comparing fragmentation pattern, accurate mass and retention time to available reference standards. JWH‐018, JWH‐019, AM2201, JWH‐122, 5F‐AKB48, AKB48‐N‐(4‐pentenyl) analog, UR144, and XLR11 were identified in the products. Results demonstrate that DART‐TOF‐MS affords a useful approach for rapid screening of herbal products for the presence and identification of synthetic cannabinoids.  相似文献   

6.
Abstract: Synthetic cannabinoid agonists are chemically diverse with multiple analogs gaining popularity as drugs of abuse. We report on the use of thin layer chromatography, gas chromatography mass spectrometry, high‐performance liquid chromatography, and liquid chromatography time of flight mass spectrometry for the identification and quantitation of these pharmacologically active chemicals in street drug dosage forms. Using these approaches, we have identified the synthetic cannabinoids JWH‐018, JWH‐019, JWH‐073, JWH‐081, JWH‐200, JWH‐210, JWH‐250, CP47,497 (C=8) (cannabicyclohexanol), RCS‐4, RCS‐8, AM‐2201, and AM‐694 in various commercially available products. Other noncannabinoid drugs including mitragynine have also been detected. Typical concentrations of drug in the materials are in the range 5–20 mg/g, or 0.5–2% by weight for each compound, although many products contained more than one drug.  相似文献   

7.
Besides the cannabinoid mimetic JWH-073, a novel 4 methylnaphthoyl homologue of JWH-073 was detected in a herbal mixture. The structure of the compound was elucidated after thin layer chromatographic enrichment from the herbal mixture by nuclear magnetic resonance (NMR) and gas chromatographic mass spectrometric (GC-MS) analysis. The paper outlines data after GC-MS, liquid chromatography mass spectrometry (LC-MS) and NMR spectroscopy, and describes the structure elucidation.  相似文献   

8.
Two synthetic cannabinoids have been identified, during a survey, as new adulterants; they might have been intended to be used as ingredients for smart drugs. The characterization of these compounds has been made by gas chromatography–mass spectrometry (GC–MS), Orbitrap high resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR), leading to the identification of WIN48098, a compound disclosed as a new adulterant in herbal and powder products, and AM679, identified in Italy for the first time.Taking into account the high number of synthetic cannabinoids seized during the last year in Italy, how quickly they appear on the illegal market and the rapidity required for analytical results, a method was developed for the simultaneous quantitation of several synthetic cannabinoids, using gas chromatography–flame ionization detection (GC–FID).  相似文献   

9.
目的建立较为快速准确的合成大麻素K3中AKB48的气相色谱/质谱检验方法。方法对进样口温度、初始柱温、柱流速及质谱采样率等4项色谱及质谱实验参数进行考察优化。结果 GC/MS检验合成大麻素K3中AKB48的优化条件为:进样口温度280℃,柱初始温度80℃,柱流速为2.0ml/min,质谱采样率为2。结论该方法具有快速、准确、灵敏等优点,可用于K3中AKB48的定性检验鉴定。  相似文献   

10.
目的使用实时直接分析-串联质谱,建立快速检测人血中的JWH-018、JWH-250和AM-2201的方法。方法用乙腈-甲醇(4:1)沉淀蛋白的方法对血样进行简单前处理,采用DART 12Dip-it自动进样系统,以正离子、MRM模式进行分析。结果血液中JWH-018、JWH-250、AM-2201可以得到有效检测,在0.02-5.00μg/m L线性关系良好,相关系数均大于0.99,检出限分别为0.016μg/m L,0.003μg/m L和0.017μg/m L,日内、日间RSD均小于15%。结论本文所建方法灵敏度高,准确性较好,方法省时省力,可用于实际案例血液中合成大麻素JWH-018、JWH-250、AM-2201的分析。  相似文献   

11.
Direct analysis in real time mass spectrometry (DART‐MS) served as a method for rapid high‐throughput screening of six commercially available “Spice” products, detecting various combinations of five synthetic cannabinoids. Direct analysis in real time is an ambient ionization process that, along with high mass accuracy time‐of‐flight (TOF)‐MS to 0.0001 Da, was employed to establish the presence of cannabinoids. Mass spectra were acquired by simply suspending a small portion of sample between the ion source and the mass spectrometer inlet. The ability to test minute amounts of sample is a major advantage when very limited amounts of evidentiary material are available. In addition, reports are widespread regarding the testing backlogs that now exist because of the large influx of designer drugs. This method circumvents time‐consuming sample extraction, derivatization, chromatographic, and other sample preparative steps required for analysis by more conventional mass spectrometric methods. Accordingly, the synthetic cannabinoids AM‐2201, JWH‐122, JWH‐203, JWH‐210, and RCS‐4 were identified in commercially available herbal Spice products, singly and in tandem, at concentrations within the range of 4–141 mg/g of material. Direct analysis in real time mass spectrometry decreases the time necessary to triage analytical evidence, and therefore, it has the potential to contribute to backlog reduction and more timely criminal prosecution.  相似文献   

12.
Plant based products laced with synthetic cannabinoids have become popular substances of abuse over the last decade. Quantitative analysis for synthetic cannabinoid content in the laced materials is necessary for health hazard assessments addressing overall exposure and toxicity when the products are smoked. A validated, broadly applicable HPLC‐UV method for the determination of synthetic cannabinoids in plant materials is presented, using acetonitrile extraction and separation on a commercial phenylhexyl stationary phase. UV detection provides excellent sensitivity with limits of quantitation (LOQs) less than 10 μg/g for many cannabinoids. The method was validated for several structural classes (dibenzopyrans, cyclohexylphenols, naphthoylindoles, benzoylindoles, phenylacetylindoles, tetramethylcyclopropylindoles) based on spike recovery experiments in multiple plant materials over a wide cannabinoid contents range (0.1–81 mg/g). Average recovery across 32 cannabinoids was 94% for marshmallow leaf, 95% for damiana leaf, and 92% for mullein leaf. The method was applied to a series of case‐related products with determined amounts ranging from 0.2 to >100 mg/g.  相似文献   

13.
目的 超快速液相色谱法测定新型“spike99”香料中JWH-073的含量.方法 采用Shim-pack XR-ODSⅡ色谱柱(2.0mm×75mm,2.2μm);流动相:乙腈(含0.1%甲酸):水(含0.1%甲酸)(80∶20,v/v),流速:0.25 mL/min;检测波长280nm,柱温:35℃,进样量:2μL,外标法定量测定JWH-073的含量.考查方法的线性范围、灵敏度、精密度、回收率和稳定性,并用于检测实际案例样品.结果 JWH-073浓度在1~50μg/mL范围内线性良好(A=9 398.7C-635.75,r =0.999 9);最低检测限为100ng/mL(S/N=3);低、中、高3种浓度的加样回收率(n=3)分别为100.52%(RSD=0.36%),99.52%(RSD =0.43%),99.03%(RSD =0.17%).结论 本法测定新型“spike99”香料中JWH-073含量操作简便、灵敏、准确,重复性好,适于在相关案件检验中选用.  相似文献   

14.
This article reports the outcome of gas chromatography/tandem mass spectrometry confirmations for THC and carboxy-THC on 93 hair samples screened by RIA for cannabinoids. The samples were taken from probationers in Pinellas County, FL, who voluntarily provided the research staff with six hair and six urine specimens, collected at 1-month intervals. There were 40 samples that were RIA (+), urinalysis (−). Samples were selected which had cannabinoid (+) outcomes for hair, urine, or both. The THC and/or the carboxy-THC was (+) on confirmation. Of these 40 samples, 22 were (+) for both THC and carboxy-THC, 15 were (+) for THC but not carboxy-THC, and three were carboxy THC (+), but THC (−). Only one sample had a (+) RIA, but was (−) for both THC and carboxy-THC on confirmation. RIA detection of cannabinoids was confirmed in nearly all cases. Most cases that were RIA (−) but urine (+) were cannabinoid (+) when analyzed by GC/MS/MS.  相似文献   

15.
The usage of herbal incenses containing synthetic cannabinoids has caused an increase in medical incidents and triggered legislations to ban these products throughout the world. Law enforcement agencies are experiencing sample backlogs due to the variety of the products and the addition of new and still‐legal compounds. In our study, proton nuclear magnetic resonance (NMR) spectroscopy was employed to promptly screen the synthetic cannabinoids after their rapid, direct detection on the herbs and in the powders by direct analysis in real time mass spectrometry (DART‐MS). A simple sample preparation protocol was employed on 50 mg of herbal sample matrices for quick NMR detection. Ten synthetic cannabinoids were discovered in fifteen herbal incenses. The combined DART‐MS and NMR methods can be used to quickly screen synthetic cannabinoids in powder and herbal samples, serving as a complementary approach to conventional GC‐MS or LC‐MS methods.  相似文献   

16.
Recreational use of the potent synthetic opioid 3,4‐ dichloro‐N‐(2‐(dimethylamino)cyclohexyl)‐N‐methylbenzamide (U‐47700) is rising, accompanied by increasingly frequent cases of serious intoxication. This article reports a case of near‐fatal U‐47700 intoxication. A man was found unconscious (with drug powder residues). After 40 h in hospital (including 12 h of supported ventilation), he recovered and was discharged. Liquid chromatography/high‐resolution mass spectrometry (LC/HRMS) or gas chromatography/mass spectrometry (GC/MS) were used to detect and quantify substances in powders, serum and urine. Powders contained U‐47700 and two synthetic cannabinoids. Serum and urine were positive for U‐47700 (351.0 ng/mL), citalopram (<LOQ), tetrahydrocannabinol (THC: 3.3 ng/mL), midazolam (<LOQ) and a novel benzodiazepine, clonazolam (6.8 ng/mL) and their metabolites but negative for synthetic cannabinoids. If potent synthetic opioids become cheaper and more easily obtainable than their classical counterparts (e.g., heroin), they will inevitably replace them and users may be exposed to elevated risks of addiction and overdose.  相似文献   

17.
To validate information on cannabis use, we investigated human hair and pubic hair for cannabinoids (THC and THC-COOH) by gas chromatography/mass spectrometry. Samples (100 mg approximately) were decontaminated with methylene chloride, then pulverized and dissolved in 1 ml 1 N NaOH for 10 min at 95 °C in the presence of 200 ng of deuterated standards. After cooling, samples were extracted by n-hexane/ethyl acetate after acidification with acetic acid. After derivatization of the dry extract by PFPA/PFP-OH, the drugs were separated on a 30-m capillary column and detected using selected-ion monitoring (m/z 377 and 459 for THC and THC-COOH, respectively). Forty-three hair samples were obtained from fatal heroin overdose cases. Among them, 35% tested positive for cannabinoids. Hair concentrations ranged from 0.26 to 2.17 ng/mg (mean, 0.74 ng/mg) and 0.07 to 0.33 ng/mg (mean, 0.16 ng/mg) of THC and THC-COOH, respectively. As is generally the case for other drugs detected in hair, metabolite concentration was always lower when compared to the parent drug concentration. In pubic hair, THC concentrations ranged from 0.34 to 3.91 ng/mg (mean, 1.35 ng/mg) and THC-COOH concentrations from 0.07 to 0.83 ng/mg (mean, 0.28 ng/mg). In most cases, the highest cannabinoid concentration was found in pubic hair, suggesting that this sample may be the more suitable for cannabis testing.  相似文献   

18.
Evaluation of cannabinoid concentrations in products from the legal cannabis market has been fraught with uncertainty. The lack of standardized testing methodology and the susceptibility of cannabinoids to degradation under certain storage conditions complicates the efforts to assess total tetrahydrocannabinol (THC) levels across wide geographic areas. There are few peer-reviewed surveys of cannabinoid concentrations in regulated products. Those that have been done have not characterized the effects of differences in analytical methodology, sample population, and storage conditions. Viridis Laboratories, which operates two cannabis safety compliance facilities in Michigan, has analyzed over 34,000 cannabis products throughout 2021 and 2022 before the sale in the regulated market. Fifteen cannabinoids in cannabis flower, concentrates, and infused products were tested using methanolic extraction and analysis by high-performance liquid chromatography with diode-array detection. Methods were validated before use, and the flower analysis procedure was certified by the Association of Analytical Collaboration. All the samples were tested before submission for sale and therefore had not undergone prolonged storage. The results are compared with those seen in other states as well as in the illicit market. Total THC levels in cannabis flower from the regulated market are significantly higher than those seen in illicit products. The distribution of cannabinoid levels is similar in flowers intended for either the medicinal or adult-use markets, with an average potency of 18%–23% of total THC. Total THC in concentrates averages up to 82%. Other cannabinoids are observed at significant levels, mostly in products specifically formulated to contain them. These results may act as a benchmark for potency levels in the regulated market.  相似文献   

19.
This is the first report regarding the characterization of the new synthetic cannabinoid 4F‐MDMB‐BINACA. 4F‐MDMB‐BINACA was first analytically confirmed in seized drug material using gas chromatography–mass spectrometry (GC‐MS), liquid chromatography–quadrupole time‐of‐flight mass spectrometry (LC‐QTOF), and nuclear magnetic resonance (NMR) spectroscopy. Subsequent to this characterization, 4F‐MDMB‐BINACA was detected in biological specimens collected as part of forensically relevant casework, including medicolegal death investigations and drug impaired driving investigations, from a variety of regions in the United States. Further analysis of biological specimens resulted in the identification of the metabolites 4F‐MDMB‐BINACA 3,3‐dimethylbutanoic acid and 4‐OH‐MDMB‐BINACA. 4F‐MDMB‐BINACA is appearing with increasing frequency as a contributory factor in deaths, creating morbidity and mortality risks for drug users. Laboratories must be aware of its presence and impact, incorporating 4F‐MDMB‐BINACA into workflows for detection and confirmation.  相似文献   

20.
Cannabinoids in blood and urine after passive inhalation of Cannabis smoke   总被引:1,自引:0,他引:1  
To test the possibility that cannabinoids are detectable following passive inhalation of Cannabis smoke the following study was performed. Five healthy volunteers who had previously never used Cannabis, passively inhaled Cannabis smoke for 30 min. Cannabis smoke was provided by other subjects smoking either marijuana or hashish cigarettes in a small closed car, containing approximately 1650 L of air. delta 9-Tetrahydrocannabinol (THC) could be detected in the blood of all passive smokers immediately after exposure in concentrations ranging from 1.3 to 6.3 ng/mL. At the same time total blood cannabinoid levels (assayed by radioimmunoassay [RIA] ) were higher than 13 ng/mL in four of the volunteers. Both THC and cannabinoid blood concentrations fell close to the cutoff limits of the respective assays during the following 2 h. Passive inhalation also resulted in the detection of cannabinoids in the urine by RIA and enzyme multiple immunoassay technique (EMIT) assays (above 13 and 20 ng/mL, respectively). It is concluded that the demonstration of cannabinoids in blood or urine is no unequivocal proof of active Cannabis smoking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号