首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The storage and use of explosives is regulated at the state and federal level, with a particular focus on physical security and rigorous accounting of the explosive inventory. For those working with explosives for the training and testing of explosive-detecting canines, cross-contamination is an important concern. Hence, explosives intended for use with canine teams must be placed into secondary storage containers that are new, clean, and airtight. A variety of containers meet these requirements and include screw-top glass jars (e.g., mason jars). However, an additional need from the explosive-detecting canine community is secondary containers that can also be used as training aids whereby the volatiles emitted by explosives are emitted in a predictable and stable manner. Currently, a generally accepted method for the storage of explosives and controlled emission of explosive vapor for canine detection does not exist. Ideally, such containers should allow odor to escape from the training aid but block external contaminates such as particulates or other volatiles. One method in use places the explosive inside a permeable cotton bag when in use for training and then stores the cotton bag inside an impermeable nylon bag for long-term storage. This paper describes the testing of an odor permeable membrane device (OPMD) as a new way to store and deploy training aids. We measured the evaporation rate and flux of various liquid explosives and volatile compounds that have been identified in the headspace of actual explosives. OPMDs were used in addition to traditional storage containers to monitor the contamination and degradation of 14 explosives used as canine training aids. Explosives were stored individually using traditional storage bags or inside an OPMD at two locations, one of which actively used the training aids. Samples from each storage type at both locations were collected at 0, 3, 6, and 9 months and analyzed using Fourier Transform Infrared (FTIR) Spectroscopy and Gas Chromatography–Mass Spectrometry (GC–MS) with Solid-Phase Microextraction (SPME). FTIR analyses showed no signs of degradation. GC–MS identified cross-contamination from ethylene glycol dinitrate (EGDN) and/or 2,3-dimethyl-2,3-dinitrobutane (DMNB) across almost all samples regardless of storage condition. The contamination was found to be higher among training aids that were stored in traditional ways and that were in active use by canine teams.  相似文献   

2.
Abstract: Human scent evidence collected from objects at a crime scene is used for scent discrimination with specially trained canines. Storage of the scent evidence is usually required yet no optimized storage protocol has been determined. Storage containers including glass, polyethylene, and aluminized pouches were evaluated to determine the optimal medium for storing human scent evidence of which glass was determined to be the optimal storage matrix. Hand odor samples were collected on three different sorbent materials, sealed in glass vials and subjected to different storage environments including room temperature, ?80°C conditions, dark storage, and UVA/UVB light exposure over a 7‐week period. Volatile organic compounds (VOCs) in the headspace of the samples were extracted and identified using solid‐phase micro‐extraction–gas chromatography/mass spectrometry (SPME–GC/MS). Three‐dimensional covariance mapping showed that glass containers subjected to minimal UVA/UVB light exposure provide the most stable environment for stored human scent samples.  相似文献   

3.
Human Remains Detection (HRD) dogs can be a useful tool to locate buried human remains because they rely on olfactory rather than visual cues. Trained specifically to locate deceased humans, it is widely believed that HRD dogs can differentiate animal remains from human remains. This study analyzed the volatile organic compounds (VOCs) present in the headspace above partially decomposed animal tissue samples and directly compared them with results published from human tissues using established solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) methods. Volatile organic compounds present in the headspace of four different animal tissue samples (bone, muscle, fat and skin) from each of cow, pig and chicken were identified and compared to published results from human samples. Although there were compounds common to both animal and human remains, the VOC signatures of each of the animal remains differed from those of humans. Of particular interest was the difference between pigs and humans, because in some countries HRD dogs are trained on pig remains rather than human remains. Pig VOC signatures were not found to be a subset of human; in addition to sharing only seven of thirty human-specific compounds, an additional nine unique VOCs were recorded from pig samples which were not present in human samples. The VOC signatures from chicken and human samples were most similar sharing the most compounds of the animals studied. Identifying VOCs that are unique to humans may be useful to develop human-specific training aids for HRD canines, and may eventually lead to an instrument that can detect clandestine human burial sites.  相似文献   

4.
Contamination of canine training aids is a pervasive issue that may lead to incorrect canine discrimination of target odors. It is therefore important to properly store training materials to maintain their integrity and efficiency. First, this study demonstrated the potential for contamination using GloGerm™ as a proxy for odor/particulate transfer. Then, eight types of containers were evaluated to determine (1) the ability to prevent odor permeation and (2) the likelihood of maintaining the ab/adsorbed odor. Lastly, a longitudinal study evaluated how the permeation of the target odor changed over time. Analysis occurred using a direct analysis in real-time mass spectrometer (DART-MS) to detect triacetone triperoxide (TATP) from the non-hazardous canine training aid known as the polymer odor capture-and-release (POCR) system. Results showed that Mylar and Opsak bags were most effective for short-term storage, maintaining low levels of ab/adsorption. Over time, the amount of TATP permeating through the primary containers and collecting in a secondary container (i.e., outer packaging) increased at 1 week and decreased thereafter (up to 4 months). The amount of TATP collecting in the primary containers, however, increased up to 1 month and decreased thereafter.  相似文献   

5.
Specially trained air scent detection canines (Canis familiaris) are commonly used by law enforcement to detect narcotics, explosives or contraband, and by fire investigators to detect the presence of accelerants. Dogs are also used by police, military, and civilian groups to locate lost or missing persons, as well as victims of natural or mass disasters. A further subspecialty is "cadaver" searching, or the use of canines to locate buried or concealed human remains. Recent forensic investigations in central Alberta demonstrated that the use of cadaver dogs could be expanded to include locating partial, scattered human remains dispersed by repeated animal scavenging. Eight dog-and-handler teams participated in a two-month training program using human and animal remains in various stages of decay as scent sources. Ten blind field tests were then conducted which simulated actual search conditions. Recovery rates ranged between 57% and 100%, indicating that properly trained cadaver dogs can make significant contributions in the location and recovery of scattered human remains.  相似文献   

6.
While canines are most commonly trained to detect traditional explosives, such as nitroaromatics and smokeless powders, homemade explosives (HMEs), such as fuel–oxidizer mixtures, are arguably a greater threat. As such, it is imperative that canines are sufficiently trained in the detection of such HMEs. The training aid delivery device (TADD) is a primary containment device that has been used to house HMEs and HME components for canine detection training purposes. This research assesses the odor release from HME components, ammonium nitrate (AN), urea nitrate (UN), and potassium chlorate (PC), housed in TADDs. Canine odor recognition tests (ORTs) were used with analytical data to determine the detectability of TADDs containing AN, UN, or PC. Headspace analysis by gas chromatography/mass spectrometry (GC/MS) with solid-phase microextraction (SPME) or online cryotrapping were used to measure ammonia or chlorine, as well as other unwanted odorants, emanating from bulk AN, UN, and PC in TADDs over 28 weeks. The analytical data showed variation in the amount of ammonia and chlorine over time, with ammonia from AN and UN decreasing slowly over time and the abundance of chlorine from PC TADDs dependent on the frequency of exposure to ambient air. Even with these variations in odor abundance, canines previously trained to detect bulk explosive HME components were able to detect all three targets in glass and plastic TADDs for at least 18 months after loading. Detection proficiency ranged from 64% to 100% and was not found to be dependent on either age of material.  相似文献   

7.
Human scent can be collected by either contact or non-contact sampling mode. The most frequently used human scent evidence collection device known as the Scent Transfer Unit (STU-100) is a dynamic sampling device and is often used in a non-contact mode. A customized human scent collection chamber was utilized in combination with controlled odor mimic permeation systems containing five standard human scent volatiles to optimize the flow rate, collection material and geometry of the absorbent material. The scent collection method which yielded the greatest amount of volatile organic compounds (VOCs) detected included the use of a single layer of Johnson and Johnson gauze/multiple layers of Dukal gauze with the STU-100 on the lowest flow rate setting. The correlation of the resulting VOC profiles demonstrate that collection of standard VOCs in controlled conditions yielded reproducible VOC profiles on all materials studied with the exception of polyester. Finally, the method was tested using actual human subjects under optimized set of conditions.  相似文献   

8.
This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and were collected below and above the body, and at the soil surface of 1.5-3.5 ft. (0.46-1.07 m) deep burial sites of four individuals over a 4-year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi-quantitation of chemicals for evaluation. This research identifies the "odor signatures" unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.  相似文献   

9.
Abstract:  Human scent evidence is utilized as an investigative tool through canine scent discriminations based on the premise that human scent is an individualizing characteristic. This study describes the development of what is effectively a human scent barcode consisting of the relative ratios of an individual's "primary odor" compounds utilized to determine a reproducible and individualizing profile which can be stored in a searchable database for a proof of concept of human scent as a biometric measure. Triplicate hand odor samples were evaluated from 10 subjects utilizing solid phase micro-extraction gas chromatography/mass spectrometry (SPME-GC/MS) and compared via Spearman Rank Correlations. Narrowing the compounds considered for each subject to only those common in all three samples, or a subject's "primary odor constituents," produced a greater degree of both individualization and discrimination; at both correlation thresholds of 0.9 and 0.8, the individuals were correctly discriminated and identified in 99.54% of the cases.  相似文献   

10.
Despite technological advances, human remains detection (HRD) dogs still remain one of the best tools for locating clandestine graves. However, soil texture may affect the escape of decomposition gases and therefore the effectiveness of HDR dogs. Six nationally credentialed HRD dogs (three HRD only and three cross‐trained) were evaluated on novel buried human remains in contrasting soils, a clayey and a sandy soil. Search time and accuracy were compared for the clayey soil and sandy soil to assess odor location difficulty. Sandy soil (p < 0.001) yielded significantly faster trained response times, but no significant differences were found in performance accuracy between soil textures or training method. Results indicate soil texture may be significant factor in odor detection difficulty. Prior knowledge of soil texture and moisture may be useful for search management and planning. Appropriate adjustments to search segment sizes, sweep widths and search time allotment depending on soil texture may optimize successful detection.  相似文献   

11.
Human remains detection dogs (HRDD) are commonly used by law enforcement agencies to search for cadavers. Biological material is typically used as a training stimulus, also called aids, to train dogs to recognize the smell of cadavers. While HRDD training approaches have received extensive attention, information remains limited on the olfactory cues used to train them. Here, we aimed to decipher the chemical basis of detection dog olfaction. Five specific objectives were explored to precise whether the composition or the concentration of the training aids drives the HRDDs responses. We recorded the behavioral responses of four HRDDs exposed to different cadaveric-like smells. We found that HRDDs recognized a simplified synthetic aid composed of cadaveric compounds. The lowest concentration at which HRDDs continued to perceive the cadaveric smell was determined. HRDDs were not impacted by slight modifications to the chemical composition of a blend of odors that they have been trained with. HRDDs associated sulfur and nitrogen compounds as human cadaver. Our findings highlight a lack of specificity of HRDDs to cadaveric compounds, which could lead to error of detection. Moreover, all dogs did not positively respond to the same blends, despite being trained with the same aids and procedure. However, we confirmed that dogs could be trained with a simplified blend of molecules. The chemical composition of a training aid has, therefore, high consequences on the performance of the trained animal, and this conclusion opens additional questions regarding olfaction-based detection animals.  相似文献   

12.
Decompositional odor analysis database   总被引:1,自引:0,他引:1  
This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), describes the establishment of the Decompositional Odor Analysis (DOA) Database for the purpose of developing a man-portable, chemical sensor capable of detecting clandestine burial sites of human remains, thereby mimicking canine olfaction. This "living" database currently spans the first year and a half of burial, providing identification, chemical trends and semi-quantitation of chemicals liberated below, above and at the surface of graves 1.5 to 3.5 ft deep (0.45 to 1.0 m) for four individuals. Triple sorbent traps (TSTs) were used to collect air samples in the field and revealed eight major classes of chemicals containing 424 specific volatile compounds associated with burial decomposition. This research is the first step toward identification of an "odor signature" unique to human decomposition with projected ramifications on cadaver dog training procedures and in the development of field portable analytical instruments which can be used to locate human remains buried in shallow graves.  相似文献   

13.
Despite numerous instrumental achievements, canines are still considered the most effective field method for explosive detection. However, due to strict explosive regulations and safety requirements, it can be a challenge for agencies with "bomb dogs" to train using neat explosive materials. This establishes a need for non-explosive canine training aids with the same volatile component profiles as the explosives that they represent. In order to compare mimic materials to their explosive counterparts, a technique must be established that not only allows for identification of volatile compounds but also can monitor changes in the headspace profile over time with respect to time and temperature. The Automated Training Aid Simulation using SPME (or ATASS) was developed for that purpose. As described, ATASS was used to observe changes in the volatile profile of three explosives (Composition C-4, 2,4-dinitrotoluene (DNT), and triacetone triperoxide (TATP)) and respective prototype training materials (0.1% by mass C-4, 1% by mass 2,4-DNT, and 1% by mass TATP). Samples were prepared in vials and metal tins within a gallon (≈ 3785 mL) paint can to simulate common field techniques for canine training. Monitoring these materials in real time provides a better understanding of the major volatile components present and how the relative abundances of these components can change over time. The results presented indicate that ATASS successfully allows for a sufficient comparison between explosive and non-explosive training materials.  相似文献   

14.
It is a common misconception that the amount of explosive is the chief contributor to the quantity of vapor that is available to trained canines. In fact, this quantity (known as odor availability) depends not only on the amount of explosive material, but also the container volume, explosive vapor pressure and temperature. In order to better understand odor availability, headspace experiments were conducted and the results were compared to theory. The vapor-phase concentrations of three liquid explosives (nitromethane, nitroethane and nitropropane) were predicted using the Ideal Gas Law for containers of various volumes that are in use for canine testing. These predictions were verified through experiments that varied the amount of sample, the container size, and the temperature. These results demonstrated that the amount of sample that is needed to saturate different sized containers is small, predictable and agrees well with theory. In general, and as expected, once the headspace of a container is saturated, any subsequent increase in sample volume will not result in the release of more vapors. The ability of canines to recognize and alert to differing amounts of nitromethane has also been studied. In particular, it was found that the response of trained canines is independent of the amount of nitromethane present, provided it is a sufficient quantity to saturate the container in which it is held.  相似文献   

15.
The aim of this study was to compare seized samples of 3,4-methylenedioxy-N-methylamphetamine (MDMA) pills, used to train law enforcement detection canine teams, to determine what differences exist in the chemical makeup and headspace odor and their effect on detectability. MDMA solutions were analyzed by liquid chromatography-mass spectrometry. Analysis of these samples showed a wide variance of MDMA (8-25%). Headspace SPME-GC/MS analysis showed that several compounds such as 3,4-methylenedioxyphenylacetone and 1-(3,4-methylenedioxyphenyl)-2-propanol are common among these MDMA samples regardless of starting compound and synthesis procedure. However, differences, such as the level of the various methylenedioxy starting compounds, were shown to affect the overall outcome of canine detection, indicating the need for more than one MDMA training aid. Combinations of compounds such as the primary odor piperonal in conjunction with a secondary compound such as MDP-2-OH or isosafrole are recommended to maximize detection of different illicit MDMA samples.  相似文献   

16.
《Science & justice》2022,62(5):657-665
Canines trained on scents from materials emitting vapours of explosives and related compounds are widely used to detect explosives in civilian, military and forensic applications. Despite the importance of these training materials, there is limited knowledge on how long these subsamples can be stored and whether vapour profiles change over time. We developed a sampling methodology that makes use of a secondary chamber for stabilisation of headspace concentration to allow reliable and reproducible determination of scent profiles. The effect of aging was investigated by following the response of volatile markers emitted from eight common explosives in open and closed containers over two months or two years. The initial headspace air volume consisted of a wide variety of chemical substances related to explosives, with levels varying in magnitude from low ppb to ppm. All included subsamples were affected by aging by demonstrating exponentially lower levels, and five subsamples showed a significant change in their scent profile. The dominant components decreased on a short time scale for plastic explosives based on RDX, PETN and dynamite as well as for granules of octol and ammonium nitrate mixed with fuel. For flakes of TNT, granules of Comp B and nitrocellulose powder, headspace air concentrations declined, but the overall character of their profiles were in general more stable. The overall changes, i.e., lower levels and/or changed profiles, justifies regular checks of the scent status of training materials. Considering these results together with data displaying marginal changes in energetic performance, it is advisable to complement scent training with training materials subjected to different durations of aging.  相似文献   

17.
This case study documents the nearly complete consumption of adult human remains by two domestic dogs (Canis familiaris) inside a residence. While scavenging behavior has been observed for coyotes, wolves, hyenas and other canines in natural outdoor environments, little information is available concerning canine scavenging of human remains in an indoor setting. In this case, the dogs were confined with the body inside a residence for approximately 1 month. The impact of intrinsic and extrinsic factors on canine scavenging behavior and the postmortem interval are examined, such as clothing on the body, perimortem trauma, drug ingestion and the availability of alternative food sources. While cases of canine scavenging of their owners are scant in the literature, this phenomenon is probably not uncommon, particularly among the elderly and indigent who live alone with pets and are socially isolated.  相似文献   

18.
Detection of canines are well‐known to be valuable in the location of contraband, such as explosives or narcotics. More recently, canines have been trained and utilized in the detection of concealed mass storage devices that might contain evidence of illegal activity such as child pornography. To lay the analytical foundation for this detection work, research was carried out to determine the volatile organic compounds associated with mass storage devices (MSD) that could be used by trained canines for detection. Headspace analysis of a variety of electronic devices was performed using solid phase microextraction (SPME) with gas chromatography/mass spectrometry (GC/MS). Analyses found several volatile compounds common to SIM and SD cards, as well as USB drives, including 2‐propenenitrile, styrene, isophorone, hydroxycyclohexyl phenyl ketone, and 2‐furanmethanol, tetrahydro. Results indicated that mass storage devices do have a characteristic odor profile making detection with minimal false alerts feasible for trained canines.  相似文献   

19.
The admissibility of human “odor mortis” discrimination in courts depends on the lack of comprehension of volatile organic compounds (VOCs) during the human decay process and of the lack in standardized procedures in training cadaver dogs. Blood was collected from four young people who died from traffic accidents and analyzed using HS‐SPME/GC‐MS at different decompositional stages. Two dogs, professionally trained, were tested to exactly locate blood samples, for each time point of the experiment. We found a long list of VOCs which varied from fresh to decomposed blood samples, showing differences in specific compounds. Dog performance showed a positive predictive value between 98.96% and 100% for DOG A, and between 99.47% and 100% for DOG B. Our findings demonstrated that decomposing human blood is a good source of VOCs and a good target for canine training.  相似文献   

20.
Odor mortis     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号