首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 957 毫秒
1.
The aim of this study was to assess the effectiveness of two current on-site oral fluid (OF) drug detection devices (OraLab and Dräger), as part of the Spanish participation in the Roadside Testing Assessment Project (ROSITA Project). The study was done in collaboration with the Spanish Traffic Police, in Galicia (NW Spain), during 2004 and 2005. A total of 468 drivers selected at the police controls agreed to participate through informed consent. In addition, saliva samples were collected and sent to the laboratory to confirm the on-site results. For this purpose, two different analytical liquid chromatography–mass spectrometry (LC–MS) methods were used to detect 11 drugs or metabolites in a 300 μL sample. Simultaneous analysis of morphine, 6-acetylmorphine, amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB, cocaine and benzoylecgonine was carried out using 100 μL of oral fluid, after an automated solid phase extraction. A different LC–MS method was performed to detect Δ9-THC in 200 μL of oral fluid using liquid–liquid extraction with hexane at pH 6. Both methods were fully validated, including linearity (1–250 ng/mL, 2–250 ng/mL) recovery (>50%), within-day and between-day precision (CV < 15%), accuracy (mean relative error < 15%), limit of detection (0.5 and 1 ng/mL), quantitation (1 and 2 ng/mL) and matrix effect. All of the positive cases and a random selection of 30% of the negatives were analyzed for confirmation analysis. Good results (sensitivity, specificity, accuracy, positive predictive value and negative predictive value > 90%) were obtained for cocaine and opiates by OraLab, and for cocaine by Dräger. However, the results for the other compounds could be improved for both detection devices. Differences in the ease of use and in the interpretation mode (visual or instrumental) were observed.  相似文献   

2.
A fully validated, sensitive and specific method for the extraction and quantification of Δ9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-Δ9-THC (THC-COOH) and for the detection of 11-hydroxy-Δ9-THC (11-OH THC) in oral fluid, urine and whole blood is presented. Solid-phase extraction and liquid chromatography–mass spectrometry (LC–MS) technique were used, with electrospray ionization. Three ions were monitored for THC and THC-COOH and two for 11-OH THC. The compounds were quantified by selected ion recording of m/z 315.31, 329.18 and 343.16 for THC, 11-OH THC and THC-COOH, respectively, and m/z 318.27 and 346.26 for the deuterated internal standards, THC-d3 and THC-COOH-d3, respectively. The method proved to be precise for THC and THC-COOH both in terms of intra-day and inter-day analysis, with intra-day coefficients of variation (CV) less than 6.3, 6.6 and 6.5% for THC in saliva, urine and blood, respectively, and 6.8 and 7.7% for THC-COOH in urine and blood, respectively. Day-to-day CVs were less than 3.5, 4.9 and 11.3% for THC in saliva, urine and blood, respectively, and 6.2 and 6.4% for THC-COOH in urine and blood, respectively. Limits of detection (LOD) were 2 ng/mL for THC in oral fluid and 0.5 ng/mL for THC and THC-COOH and 20 ng/mL for 11-OH THC, in urine and blood. Calibration curves showed a linear relationship for THC and THC-COOH in all samples (r2 > 0.999) within the range investigated.The procedure presented here has high specificity, selectivity and sensitivity. It can be regarded as an alternative method to GC–MS for the confirmation of positive immunoassay test results, and can be used as a suitable analytical tool for the quantification of THC and THC-COOH in oral fluid, urine and/or blood samples.  相似文献   

3.
The aim of this study was to assess the effectiveness of two current on-site oral fluid (OF) drug detection devices (OraLab and Dr?ger), as part of the Spanish participation in the Roadside Testing Assessment Project (ROSITA Project). The study was done in collaboration with the Spanish Traffic Police, in Galicia (NW Spain), during 2004 and 2005. A total of 468 drivers selected at the police controls agreed to participate through informed consent. In addition, saliva samples were collected and sent to the laboratory to confirm the on-site results. For this purpose, two different analytical liquid chromatography-mass spectrometry (LC-MS) methods were used to detect 11 drugs or metabolites in a 300 microL sample. Simultaneous analysis of morphine, 6-acetylmorphine, amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB, cocaine and benzoylecgonine was carried out using 100 microL of oral fluid, after an automated solid phase extraction. A different LC-MS method was performed to detect Delta(9)-THC in 200 microL of oral fluid using liquid-liquid extraction with hexane at pH 6. Both methods were fully validated, including linearity (1-250 ng/mL, 2-250 ng/mL) recovery (>50%), within-day and between-day precision (CV<15%), accuracy (mean relative error<15%), limit of detection (0.5 and 1 ng/mL), quantitation (1 and 2 ng/mL) and matrix effect. All of the positive cases and a random selection of 30% of the negatives were analyzed for confirmation analysis. Good results (sensitivity, specificity, accuracy, positive predictive value and negative predictive value>90%) were obtained for cocaine and opiates by OraLab, and for cocaine by Dr?ger. However, the results for the other compounds could be improved for both detection devices. Differences in the ease of use and in the interpretation mode (visual or instrumental) were observed.  相似文献   

4.
A case is presented of a death caused by self-injection of sufentanil and midazolam. Biological fluids and tissues were analyzed for midazolam by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS) and for sufentanil by GC/MS. Midazolam was extracted from basified fluids or tissues homogenated with n-butyl chloride and analyzed by HPLC by using a phosphate buffer: acetonitrile (60:40) mobile phase on a mu-Bondapak C18 column at 240 nm. Sufentanil was extracted from basified fluids and tissue homogenates with hexane:ethanol (19:1). GC/MS methodology for both compounds consisted of chromatographic separation on a 15-m by 0.25-mm inside diameter (ID) DB-5 (1.0-micron-thick film) bonded phase fused silica capillary column with helium carrier (29 cm/s) splitless injection at 260 degrees C; column 200 degrees C (0.8 min) 10 degrees C/min to 270 degrees C; and electron ionization and multiple ion detection for midazolam (m/z 310), methaqualone (IS, m/z 235), sufentanil (m/z 289), and fentanyl (IS, m/z 245). Sufentanil concentrations were: blood 1.1 ng/mL, urine 1.3 ng/mL, vitreous humor 1.2 ng/mL, liver 1.75 ng/g, and kidney 5.5 ng/g. Midazolam concentrations were: blood 50 ng/mL, urine 300 ng/mL, liver 930 ng/g, and kidney 290 ng/g. Cause of death was attributed to an acute sufentanil/midazolam intoxication and manner of death a suicide.  相似文献   

5.
An analytical method using solid-phase extraction (SPE) and high-performance liquid chromatography–mass spectrometry (LC–MS) has been developed and validated for the confirmation of Δ9-tetrahydrocannabinol (THC) in oral fluid samples. Oral fluid was extracted using Bond Elut LRC-Certify solid-phase extraction columns (10 cm3, 300 mg) and elution performed with n-hexane/ethyl acetate. Quantitation made use of the selected ion-recording mode (SIR) using the most abundant characteristic ion [THC + H+], m/z 315.31 and the fragment ion, m/z 193.13 for confirmation, and m/z 318.00 for the protonated internal standard, [d3-THC + H+]. The method proved to be precise for THC, in terms of both intra-day and inter-day analyses, with coefficients of variation less than 10%, and the calculated extraction efficiencies for THC ranged from 76 to 83%. Calibration standards spiked with THC between 2 and 100 ng/mL showed a linear relationship (r2 = 0.999). The method presented was applied to the oral fluid samples taken from the volunteers during the largest music event in Portugal, named Rock in Rio-Lisboa. Oral fluid was collected from 40 persons by expectoration and with Salivette®. In 55% of the samples obtained by expectorating, THC was detected with concentration ranges from 1033 to 6552 ng/mL and in 45% of cases THC was detected at concentrations between 51 and 937 ng/mL. However, using Salivette® collection, 26 of the 40 cases had an undetectable THC.  相似文献   

6.
Oral fluid (collected with the Intercept((R)) device) and plasma samples were obtained from 139 individuals suspected of driving under the influence of drugs and analyzed for Delta(9)-tetrahydrocannabinol (THC), the major psychoactive constituent of cannabis, using a validated quantitative LC-MS-MS method. The first aim of the study was to investigate the correlation between the analytical data obtained in the plasma and oral fluid samples, to evaluate the use of oral fluid as a 'predictor' of actual cannabis influence. The results of the study indicated a good accuracy when comparing THC detection in oral fluid and plasma (84.9-95.7% depending on the cut-off used for plasma analysis). ROC curve analysis was subsequently used to determine the optimal cut-off value for THC in oral fluid with plasma as reference sample, in order to 'predict' a positive plasma result for THC. When using the LOQ of the method for plasma (0.5 ng/mL), the optimal cut-off was 1.2 ng/mL THC in oral fluid (sensitivity, 94.7%; specificity, 92.0%). When using the legal cut-off in Belgium for driving under the influence in plasma (2 ng/mL), an optimal cut-off value of 5.2 ng/mL THC in oral fluid (sensitivity, 91.6%; specificity, 88.6%) was observed. In the second part of the study, the performance of the on-site Dr?ger DrugTest for the screening of THC in oral fluid during roadside controls was assessed by comparison with the corresponding LC-MS-MS results in plasma and oral fluid. Since the accuracy was always less than 66%, we do not recommend this Dr?ger DrugTest system for the on-site screening of THC in oral fluid.  相似文献   

7.
A new rapid and sensitive high-performance liquid chromatography (HPLC) method has been developed for the simultaneous identification and quantification in human plasma of the 13 most commonly prescribed beta-blockers and one active metabolite-atenolol, sotalol, diacetolol, carteolol, nadolol, pindolol, acebutolol, metoprolol, celiprolol, oxprenolol, labetalol, propranolol, tertatolol and betaxolol. It involves liquid-liquid extraction procedures followed by liquid chromatography coupled to photodiode-array UV detection with a fixed wavelength at 220 nm for quantification. Compounds were separated on a 5 microm Hypurity C(18) (ThermoHypersil) analytical column (250 mm x 4.6 mm, i.d.) using a gradient of acetonitrile-phosphate buffer pH 3.8 at a flow rate of 1.0 ml/min. The total analysis time was 26 min per sample. Extraction recoveries were between 74 and 113% for the polar compounds and between 20 and 56% for the most apolar compounds. Calibration lines were linear in the range from 25 to 1000 ng/ml for all compounds excepted carteolol and nadolol (50-1000 ng/ml), all of them with coefficients of determination (r2 values) >/=0.994. Limits of detection (LODs) ranged from 5 to 10 ng/ml. Intra-assay and inter-assay precision and accuracy were studied at two concentration levels (100 and 500 ng/ml). The intra-assay coefficients of variation (CVs) for all compounds were 相似文献   

8.
A fully validated, sensitive and specific method for the extraction and quantification of Delta(9)-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-Delta(9)-THC (THC-COOH) and for the detection of 11-hydroxy-Delta(9)-THC (11-OH THC) in oral fluid, urine and whole blood is presented. Solid-phase extraction and liquid chromatography-mass spectrometry (LC-MS) technique were used, with electrospray ionization. Three ions were monitored for THC and THC-COOH and two for 11-OH THC. The compounds were quantified by selected ion recording of m/z 315.31, 329.18 and 343.16 for THC, 11-OH THC and THC-COOH, respectively, and m/z 318.27 and 346.26 for the deuterated internal standards, THC-d(3) and THC-COOH-d(3), respectively. The method proved to be precise for THC and THC-COOH both in terms of intra-day and inter-day analysis, with intra-day coefficients of variation (CV) less than 6.3, 6.6 and 6.5% for THC in saliva, urine and blood, respectively, and 6.8 and 7.7% for THC-COOH in urine and blood, respectively. Day-to-day CVs were less than 3.5, 4.9 and 11.3% for THC in saliva, urine and blood, respectively, and 6.2 and 6.4% for THC-COOH in urine and blood, respectively. Limits of detection (LOD) were 2 ng/mL for THC in oral fluid and 0.5 ng/mL for THC and THC-COOH and 20 ng/mL for 11-OH THC, in urine and blood. Calibration curves showed a linear relationship for THC and THC-COOH in all samples (r(2)>0.999) within the range investigated. The procedure presented here has high specificity, selectivity and sensitivity. It can be regarded as an alternative method to GC-MS for the confirmation of positive immunoassay test results, and can be used as a suitable analytical tool for the quantification of THC and THC-COOH in oral fluid, urine and/or blood samples.  相似文献   

9.
The purpose of this study was to evaluate the efficiency of the Cozart® RapiScan (CRS) drug test system for detecting opiates and cocaine in oral fluid. Oral fluid samples were collected using the Cozart® RapiScan collection system from 358 donors who were receiving treatment for their addiction and were monitored for drug misuse. A further 103 oral fluid samples were collected from volunteer donors who were not drug users. The samples were analyzed in the laboratory using the two-panel Cozart® RapiScan cartridge for opiates and cocaine and confirmed using gas chromatography–mass spectrometry (GC–MS). The samples were stored frozen at −20 °C until analysis by GC–MS. The overall accuracy of the CRS for both opiates and cocaine was 100%. Samples spiked at 50% above and below the cut-off consistently gave negative and positive results respectively. A total of 88 samples were positive for various opiates and 111 samples were positive for cocaine and/or its metabolites. The CRS for opiates and cocaine in oral fluid, using a cut-off of 30 ng/mL morphine or benzoylecgonine equivalents in neat oral fluid, had overall efficiencies of 98% and 99%, respectively, versus GC–MS. A series of potential adulterants of oral fluid were evaluated and shown not to alter the outcome of the test result.  相似文献   

10.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C18 5 μm, 2.1 mm × 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A® (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 °C in NaOH 1 M before liquid–liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1–50 ng/mL in blood and urine; in the range 5–500 pg/mg for MA, MDMA, MDEA and MBDB, and 20–500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T + 12 h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D + 8) and scalp hair at day 60 (D + 60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

11.
全血中西地那非的HPLC分析   总被引:1,自引:0,他引:1  
目的建立血中西地那非的HPLC-DAD检测方法。方法用硅胶小柱分离提取血中的西地那非,HPLC-DAD分析。分析柱:Nova-pak C18(150×3.9mm),5.0μm;保护柱:Phenom enex C18(ODS,4.0×3.0mm,Octade-cyl);流动相A:0.06%三氟乙酸+0.06%三乙胺+0.25%乙腈,B:乙腈,梯度程序分离;DAD:230nm。结果血中西地那非线性检测范围为1.5-80.0μg/mL,最小检出限量为5ng,平均回收率:82.45%。结论本检验方法简单、准确、快速,适合于临床检测及刑事案件的快速分析。  相似文献   

12.
5-Methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) is a designer hallucinogen derived from tryptamine and is reportedly abused and involved in criminal activities. For the detection of 5-MeO-DIPT use, a liquid chromatography-tandem mass spectrometric method for 5-MeO-DIPT and its metabolites, 5-hydroxy-N,N-diisopropyltryptamine (5-OH-DIPT) and 5-methoxy-N,N-isopropyltryptamine (5-MeO-IPT) was developed and validated in rat urine. The urine samples were pretreated by protein precipitation with acetonitrile and introduced into a BDS HYPERSIL C(18) column (50 × 2.0 mm, 5 μm) for chromatographic separation. Mobile phases consisted of methanol, water, and 1% formic acid, and gradient elution was used at a flow rate of 0.2 mL/min. For the MS detection, multiple-reaction monitoring analysis was adopted. The linear range was 0.01-10 μg/mL, and the lower limit of quantification was 10 ng/mL for all analytes. The intra- and interday accuracies and precisions met the criteria (<15%). The developed method was successfully applied to the drug-treated rat urine.  相似文献   

13.
生物检材中吗啡类生物碱的LC-MS/MS分析   总被引:7,自引:0,他引:7  
Xiang P  Shen M  Shen BH  Ma D  Bu J  Jiang Y  Zhuo XY 《法医学杂志》2006,22(1):52-54,57
目的针对滥用药物分析鉴定实践中亟待解决的问题,开展LC-MS/MS分析生物检材中吗啡类生物碱的应用研究。方法满足不同的鉴定需要,分别建立血液、尿液、唾液和头发等生物检材的样品前处理方法,确定同时分析海洛因、单乙酰吗啡、吗啡、可待因、乙酰可待因、二氢可待因酮和氢吗啡酮等吗啡类生物碱的LC-MS/MS方法。将方法应用于实际案例。结果所建立的方法对吗啡类生物碱分离良好。尿液稀释法、尿液提取法和头发中吗啡的最低检测限(LOD)分别为10ng/mL、0.01ng/mL和0.01ng/mg。结论所建立的方法简便、快速、特异性强、灵敏度高。目标物中加入二氢可待因酮和氢吗啡酮扩大了方法的实用范围。  相似文献   

14.
2,5-Dimethoxy-4-bromoamphetamine (DOB) is one of the potent hallucinogenic phenylalkylamines, whose ingestion has already caused several deaths reported all over the world. However, there is unsufficient information on DOB properties based on controlled pharmacokinetic studies available. The aim of this study was to clarify the distribution profile of DOB and its phenolic metabolite 2-methoxy-5-hydroxy-4-bromoamphetamine (2M5H4BA) in blood and biological tissues of experimental rats. The rats were administered a 20 mg/kg dose of DOB·HCl by oral ingestion or subcutaneous injection. Plasma and brain, liver and lung tissues were collected at 0.5, 1, 2, 4, 8, 16, and 32 h after dosing (three animals per time point). The samples were prepared by a liquid–liquid extraction procedure and the extracts were assayed by GC–MS. After per oral application, DOB peak plasma level of 320 ng/mL was reached after one-hour post dosing as well as 2M5H4BA peak concentration of 203 ng/mL. A rapid phase of DOB absorption, 2M5H4BA formation and their tissue distribution during the first two hours after application were followed by a slow decrease rate of the elimination process until 32 h. After subcutaneous application, high plasma levels of the unchanged parent drug and relatively reduced formation of its metabolite 2M5H4BA were observed. DOB maximum plasma concentration of 1143 ng/mL was reached after one-hour post application, whereas its metabolite peak level after 8 h was 213 ng/mL. The concentration profiles of both compounds in plasma after per oral and subcutaneous administration revealed the existence of significant first pass effect after per oral administration that significantly affected DOB bioavailability. DOB tissue concentrations exceeded plasma and the highest values were found in the lungs, where drug accumulation occurred with prolonged retention till 32 h after subcutaneous dose. Although the plasma/tissue transfer was more effective for the lipophilic parent drug than for its hydroxylated metabolite 2M5H4BA, the metabolite tissue levels were significant. The hallucinogenic potential of 2M5H4BA appearing in brain remains unclear as nothing is known about its pharmacological activity at present.  相似文献   

15.
Liang C  Zhang YR  Jin QY  Guo YM 《法医学杂志》2006,22(5):349-352
目的建立全血中37种常见药(毒)物的固相萃取-高效液相色谱(SPE-HPLC)分析方法。方法以多沙普仑为内标,0.5mL全血经Oasis小柱固相萃取后,用HPLC进行分析,内源性物质不干扰测定。色谱柱采用LiChrospher!100RP-C18柱(250mm×4.0mm×5μm);二极管阵列检测器,检测波长为230nm和250nm,同时进行紫外扫描;柱温50℃。结果37种药(毒)物的绝对回收率除吗啡外均大于61.68%;日内及日间精密度均小于10%;检测限1~30ng/mL;线性相关系数在0.99798以上。结论本法快速、灵敏、重现性好,可用于实际案例中多种药(毒)物的分析。  相似文献   

16.
An analytical method using solid-phase extraction (SPE) and high-performance liquid chromatography-mass spectrometry (LC-MS) has been developed and validated for the confirmation of Delta(9)-tetrahydrocannabinol (THC) in oral fluid samples. Oral fluid was extracted using Bond Elut LRC-Certify solid-phase extraction columns (10 cm(3), 300 mg) and elution performed with n-hexane/ethyl acetate. Quantitation made use of the selected ion-recording mode (SIR) using the most abundant characteristic ion [THC+H(+)], m/z 315.31 and the fragment ion, m/z 193.13 for confirmation, and m/z 318.00 for the protonated internal standard, [d(3)-THC+H(+)]. The method proved to be precise for THC, in terms of both intra-day and inter-day analyses, with coefficients of variation less than 10%, and the calculated extraction efficiencies for THC ranged from 76 to 83%. Calibration standards spiked with THC between 2 and 100 ng/mL showed a linear relationship (r(2)=0.999). The method presented was applied to the oral fluid samples taken from the volunteers during the largest music event in Portugal, named Rock in Rio-Lisboa. Oral fluid was collected from 40 persons by expectoration and with Salivette. In 55% of the samples obtained by expectorating, THC was detected with concentration ranges from 1033 to 6552 ng/mL and in 45% of cases THC was detected at concentrations between 51 and 937 ng/mL. However, using Salivette collection, 26 of the 40 cases had an undetectable THC.  相似文献   

17.
There were 13,176 roadside drug tests performed in the first year of the random drug-testing program conducted in the state of Victoria. Drugs targeted in the testing were methamphetamines and Δ9-tetrahydrocannabinol (THC). On-site screening was conducted by the police using DrugWipe®, while the driver was still in the vehicle and if positive, a second test on collected oral fluid, using the Rapiscan®, was performed in a specially outfitted “drug bus” located adjacent to the testing area. Oral fluid on presumptive positive cases was sent to the laboratory for confirmation with limits of quantification of 5, 5, and 2 ng/mL for methamphetamine (MA), methylenedioxy-methamphetamine (MDMA), and THC, respectively. Recovery experiments conducted in the laboratory showed quantitative recovery of analytes from the collector. When oral fluid could not be collected, blood was taken from the driver and sent to the laboratory for confirmation. These roadside tests gave 313 positive cases following GC–MS confirmation. These comprised 269, 118, and 87 cases positive to MA, MDMA, and THC, respectively. The median oral concentrations (undiluted) of MA, MDMA, and THC was 1136, 2724, and 81 ng/mL. The overall drug positive rate was 2.4% of the screened population. This rate was highest in drivers of cars (2.8%). The average age of drivers detected with a positive drug reading was 28 years. Large vehicle (trucks over 4.5 t) drivers were older; on average at 38 years. Females accounted for 19% of all positives, although none of the positive truck drivers were female. There was one false positive to cannabis when the results of both on-site devices were considered and four to methamphetamines.  相似文献   

18.
Designer psychostimulants are known by recreational drug users to produce a complex array of adrenergic and hallucinogenic effects. Many of these drugs are not targeted during routine toxicology testing and as a consequence, they are rarely reported. The purpose of this study was to develop a procedure for the detection of 15 psychostimulants in urine using liquid chromatography–tandem mass spectrometry (LC‐MS/MS), specifically 2,5‐dimethoxy‐4‐bromophenethylamine (2C‐B), 2,5‐dimethoxy‐4‐chlorophenethylamine (2C‐C), 2,5‐dimethoxy‐4‐methylphenethylamine (2C‐D), 2,5‐dimethoxy‐4‐ethylphenethylamine (2C‐E), 2,5‐dimethoxyphenethylamine (2C‐H), 2,5‐dimethoxy‐4‐iodophenethylamine (2C‐I), 2,5‐dimethoxy‐4‐ethylthiophenethylamine (2C‐T‐2), 2,5‐dimethoxy‐4‐isopropylthiophenethylamine (2C‐T‐4), 2,5‐dimethoxy‐4‐propylthiophenethylamine (2C‐T‐7), 2,5‐dimethoxy‐4‐bromoamphetamine (DOB), 2,5‐dimethoxy‐4‐chloroamphetamine (DOC), 2,5‐dimethoxy‐4‐ethylamphetamine (DOET), 2,5‐dimethoxy‐4‐iodoamphetamine (DOI), 2,5‐dimethoxy‐4‐methylamphetamine (DOM), and 4‐methylthioamphetamine (4‐MTA). Analytical recoveries using solid‐phase extraction were 64–92% and the limit of detection was 0.5 ng/mL for all drugs except 2C‐B (1 ng/mL). The assay was evaluated in terms of analytical recovery, precision, accuracy, linearity, matrix effect, and interferences. The technique allows for the simultaneous detection of 15 psychostimulants at sub‐ng/mL concentrations.  相似文献   

19.
目的建立全血中佐匹克隆、唑吡坦和扎来普隆的液相色谱一四级杆飞行时间串联质谱联用同时检测方法。方法采用液液萃取进行提取,提取物以ZorbaxEclipsePlusC18(2.1×50mm,1.8fire)色谱柱分离,以10mmol/L甲酸铵(含0.1%甲酸)一乙腈为流动相梯度洗脱,流速为0.2mL/min,四级杆一飞行时间串联质谱检测。结果全血中佐匹克隆和扎来普隆的线性范围为10ng/mL-500ng/mL,检出限为3ng/mL唑吡坦的线性范围为3ng/mL-300ng/mL,检出限为lng/mL。结论本方法准确、快速、灵敏,可用于全血中佐匹克隆、唑吡坦和扎来普隆的同时定性、定量检测。  相似文献   

20.
目的建立全血中16种除草剂的超高效液相色谱-串联质谱(UPLC-MS/MS)同时检测方法,为除草剂中毒案事件及其他刑事案件血液中该16种除草剂的检验鉴定提供依据。方法取200μL的血液,加入800μL乙腈-水(体积比80/20),进行蛋白沉淀后,采用Acquity BEH C18(2.1mm×100mm,1.7μm)色谱柱,以水(5mmol/L的甲酸铵,0.1%的甲酸)-乙腈为流动相进行梯度洗脱,采用电喷雾离子源(ESI)、多反应监测(MRM)正离子模式对16种化合物进行检测。结果在1~200ng/mL范围内线性关系良好,R2均大于0.996;基质效应(ME%)为85.2%~104.4%,相对标准偏差(RSD%)为0.72%~4.84%;仪器检出限(IDLs)为0.2~2 ng/mL(信噪比S/N≥3),方法检出限(MDLs)为0.5~3ng/mL(信噪比S/N≥3),最低定量限(LOQs)为1~7ng/mL(信噪比S/N≥10)。结论本实验建立的全血中16种除草剂同时检验方法,前处理简便快捷、回收率高、精密度好、方法检出限低,可作为该16种除草剂中(投)毒案件的检验方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号