首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
目的建立血液中水合氯醛及其代谢物的色谱串联质谱检测方法,用于法医案件的检验。方法血液检材经乙酸乙酯萃取后气质联用选择离子扫描(SIM)检测水合氯醛和三氯乙醇,经乙腈沉淀蛋白后液质联用负离子模式下多反应监测(MRM)检测三氯乙酸。结果水合氯醛及其代谢物的线性范围分别是100ng/mL~15μg/mL、500ng/mL~20μg/mL和500ng/mL~15μg/mL,线性关系良好,R~2均大于0.998,最低检出限分别为15ng/mL、130ng/mL和30ng/mL,最低定量限分别为50ng/mL、500ng/mL和100ng/mL;日内精密度分别在2.26%~7.31%、3.09%~7.23%和2.79%~5.37%;日间精密度分别在4.14%~7.03%、2.18%~4.43%和2.75%~4.96%;提取回收率分别为92.72%~106.30%、94.22%~103.70%和89.05%~104.50%。并对水合氯醛相关案件进行检测,心血中水合氯醛浓度为411.34ng/mL,三氯乙醇浓度为9.49μg/mL,三氯乙酸浓度为8.32μg/mL。结论本文建立的水合氯醛及其代谢物的检测方法准确简单快速,可应用于水合氯醛中毒案件的法医学鉴定。  相似文献   

2.
目的 建立全血和尿液中3种麻痹性贝类毒素(石房蛤毒素、脱氨甲酰基石房蛤毒素和新石房蛤毒素的超高效液相色谱—串联质谱检测方法。方法 用乙腈-0.1%乙酸甲醇(1:3,v:v)提取血液样本,用甲醇(含0.5%乙酸)提取尿液样本后过PA固相萃取柱,选用ACQUITY UPLC BEH Amide色谱柱。质谱仪采用电喷雾离子源,正离子扫描,多反应监测模式检测,外标法定量。结果 血添加样本中,石房蛤毒素、脱氨甲酰基石房蛤毒素和新石房蛤毒素分别在0.5~100 ng/mL、1~100 ng/mL范围内线性关系良好,相关系数(r)≥0.996,毒素的检出限LOD分别为0.1 ng/mL、0.5 ng/mL、0.5 ng/mL,定量限LOQ分别为0.5 ng/mL、1.0 ng/mL、1.0 ng/mL。方法的回收率为63.23%~81.77%,日内精密度为3.06%~9.58%,日间精密度为3.87%~9.96%,准确度为91.67%~102.42%。尿添加样本中,3种毒素均在1~100 ng/mL范围内线性关系良好,相关系数(r)≥0.996,毒素的检出限为0.5 ng/mL,定量限为1.0 ng...  相似文献   

3.
Zhao H  Zhuo XY  Yan H  Shen BH 《法医学杂志》2010,26(4):269-272
目的建立血液、尿液中乙基葡萄糖醛酸苷(ethyl glucuronide,EtG)的液相色谱-串联质谱(LC-MS/MS)检测方法。方法血液、尿液用乙腈沉淀蛋白,离心后取上清液用LC-MS/MS检测。结果血液、尿液中EtG的检出限均为0.05μg/mL,线性范围均为0.10~5.00μg/mL(r〉0.999),检测方法准确度为95%~109%,日间及日内精密度〈12%。对送检案例血液中EtG进行检测,效果良好。结论本方法适用于血液、尿液中EtG的检测。  相似文献   

4.
血液、尿液中氯胺酮及其代谢物去甲氯胺酮的HPLC分析   总被引:5,自引:0,他引:5  
Chen LL  Lia OL  Li WJ  Huang LY  Yan YY  Yang L  Ma XN  He R 《法医学杂志》2008,24(1):38-42
目的 建立血液、尿液中氯胺酮及其代谢物去甲氯胺酮的高效液相色谱(HPLC)分析方法.方法 以非那西丁为内标,检材加入10%的氢氧化钠溶液调节pH值为14,用甲苯提取,离心后取有机层,水浴下吹干,乙腈定容后进HPLC仪分析.结果 检测血液中氯胺酮和去甲氯胺酮的线性范围均是0.05~10μg/mL(r2>0.999 3),检测尿液中氯胺酮和去甲氯胺酮的线性范围均是0.01~50 μg/mL(r2>0.999 5).氯胺酮和去甲氯胺酮在血液和尿液中的检测限分别是0.006 μg/mL和0.003 μg/mL.血液和尿液中氯胺酮和去甲氯胺酮的回收率不低于82.4%.检测血液和尿液中氯胺酮和去甲氯胺酮的日内精密度和日间精密度均小于10.0%.将所建的方法应用于给大鼠氯胺酮后的血液和尿液中的氯胺酮和去甲氯胺酮的测定,得到了氯胺酮和去甲氯胺酮在大鼠的药时曲线和尿排药速率曲线. 结论本方法简便、快捷,适用于血液、尿液中氯胺酮及其代谢物去甲氯胺酮的分析.  相似文献   

5.
目的建立一种尿液中9种苯二氮?类药物的超分子溶剂样品气相色谱-串联质谱(gas chromatography-tandem mass spectrometry,GC-MS/MS)分析方法。方法含9种苯二氮?类药物对照品的尿液样品用四氢呋喃和1-己醇组成的超分子溶剂进行液液萃取,取溶剂层氮吹至干,残余物用甲醇复溶后进行硝西泮和氯氮平质量浓度在1~100 ng/mL,劳拉西泮和阿普唑仑质量浓度在5~100 ng/mL,硝西泮和氯硝西0.999 1~0.999 9,定量下限为0.2~5 ng/mL,提取回收率为81.12%~99.52%,日内精密度[相对标准偏差(relative standard deviation,RSD)]和准确度(偏倚)分别小于9.86%、9.51%;日间精密度(RSD)和准确度(偏倚)摄口服阿普唑仑片后,在8~72 h内尿液中阿普唑仑的质量浓度为6.54~88.28 ng/mL。结论本研究建立的疗及司法鉴定中苯二氮?类药物中毒监测提供技术支持。  相似文献   

6.
高效液相色谱法测定人血液、尿液中的2,4-D丁酯   总被引:1,自引:0,他引:1  
目的建立检测血液、尿液中2,4-D丁酯的高效液相色谱分析方法。方法采用正己烷为样品萃取溶剂,色谱柱为Zorbax SB-Aq柱,流动相为V(甲醇)∶V(水)=60∶40。结果 2,4-D丁酯在血液和尿液中的线性范围分别为0.10~10.00μg/mL(r≥0.999 8)和0.08~8.00μg/mL(r≥0.999 5),检测限分别为0.002 0μg/mL和0.001 8μg/mL,准确度为94.5%~104.5%,日内、日间精密度≤4.5%。结论本研究建立的血液、尿液中2,4-D丁酯的提取和HPLC检测方法,可应用于2,4-D丁酯中毒的快速检验和中毒死亡的法医学鉴定。  相似文献   

7.
目的建立一种尿液中9种苯二氮?类药物的超分子溶剂样品气相色谱-串联质谱(gas chromatography-tandem mass spectrometry,GC-MS/MS)分析方法。方法含9种苯二氮?类药物对照品的尿液样品用四氢呋喃和1-己醇组成的超分子溶剂进行液液萃取,取溶剂层氮吹至干,残余物用甲醇复溶后进行GC-MS/MS分析,数据采集方式为多反应监测模式,采用内标法定量。结果尿液中地西泮、咪达唑仑、氟硝西泮和氯氮平质量浓度在1~100ng/mL,劳拉西泮和阿普唑仑质量浓度在5~100ng/mL,硝西泮和氯硝西泮质量浓度在2~100ng/mL,艾司唑仑在质量浓度0.2~100ng/mL范围内具有良好的线性关系,相关系数为0.9991~0.9999,定量下限为0.2~5ng/mL,提取回收率为81.12%~99.52%,日内精密度[相对标准偏差(relative standard deviation,RSD)]和准确度(偏倚)分别小于9.86%、9.51%;日间精密度(RSD)和准确度(偏倚)分别小于8.74%、9.98%。室温和-20℃条件下,尿液中9种药物在15d内具有良好的稳定性。8名志愿者单摄口服阿普唑仑片后,在8~72h内尿液中阿普唑仑的质量浓度为6.54~88.28ng/mL。结论本研究建立的尿液中9种苯二氮?类药物的超分子溶剂萃取-GC-MS/MS分析方法,简便、快速、准确、灵敏,可为临床治疗及司法鉴定中苯二氮?类药物中毒监测提供技术支持。  相似文献   

8.
目的建立生物样品中硫丹(α硫丹和β硫丹)的气相色谱-串联质谱(GC-MS/MS)检测方法,观察硫丹在水生动物体内的分布,为相关案件的法医学鉴定提供实验依据。方法血液和肌肉样品采用乙腈沉淀蛋白,GC-MS/MS法检测,多反应监测模式扫描,以保留时间和离子比例定性,外标工作曲线法定量。结果血液样品中α硫丹和β硫丹在0.062 5~10μg/mL范围内线性关系良好,相关系数(r)均大于0.99,检出限分别为1 ng/mL和2 ng/mL,定量限分别为4 ng/mL和8 ng/mL。肌肉样品中α硫丹和β硫丹在0.062 5~10μg/g范围内线性关系良好,相关系数(r)均大于0.98,检出限分别为1 ng/g和4 ng/g,定量限分别为4 ng/g和16 ng/g。血液和肌肉样品中α硫丹和β硫丹的准确度为90.76%~108.91%,日内精密度(RSD)为2.35%~8.71%,日间精密度(RSD)为5.44%~10.29%。中毒案件中,在鱼和螃蟹体内各部位均检出硫丹,且不同部位间含量差异均具有统计学意义。结论本研究建立的硫丹GC-MS/MS检测方法快捷、准确、灵敏,适用于微量生物检材中硫丹的检测。硫丹在鱼和螃蟹体内分布不均匀,为硫丹相关法医学鉴定案件中毒物分析检材的采集和分析提供了依据。  相似文献   

9.
目的建立检测血液和尿液中秋水仙碱的液相色谱-串联质谱法。方法0.5mL血液或尿液以丁丙诺啡为内标,经pH9.2硼酸盐缓冲溶液碱化后,用乙酸乙酯进行提取,在ZORBAX SB-C18液相柱(150mm×2.1mm×5μm)上以V(甲醇)∶V(20mmol/L乙酸铵和0.1%甲酸缓冲溶液)=80∶20为流动相,流速为0.2mL/min,采用电喷雾正离子模式离子化、多反应监测模式检测秋水仙碱,内标法定量。结果血液、尿液中秋水仙碱与内标丁丙诺啡色谱分离良好,秋水仙碱在0.1~50 ng/mL内均具有良好的线性,相关系数>0.9990,最低检出限为0.05ng/mL,方法回收率为94%~116%,日内与日间精密度(RSD)均小于8.5%。结论所建LC-MS-MS方法灵敏度高、操作简便、快速、准确,适用于血液及尿液等生物检材中痕量秋水仙碱成分的检测。  相似文献   

10.
目的建立微波消解ICP/AES标准加入法测定尿液中As、Ba、Pb、Cd、Cr、Zn、Sb金属毒物。方法取1.0mL尿样,加入3mL浓硝酸和0.5mL双氧水,进行微波消解。冷却后,用2%的硝酸定容至10.0mL。采用标准加入ICP/AES法进行定量分析,并优选实验条件及考察方法可靠性。结果尿液中As、Ba、Pb、Cd、Cr、Zn、Sb回收率在98.6%~104%之间;检出限在2.0~5.1ng/mL之间;线性范围Zn为5.0~200.0μg/mL,其余元素为0.5~20.0μg/mL。采用本文方法测定与国家标准物质人发和牛肝数据测定值基本一致。结论该方法回收率高、检测限低、能多元素同时测定,可以用于尿液中金属元素的检测。  相似文献   

11.
生物检材中吗啡类生物碱的LC-MS/MS分析   总被引:7,自引:0,他引:7  
Xiang P  Shen M  Shen BH  Ma D  Bu J  Jiang Y  Zhuo XY 《法医学杂志》2006,22(1):52-54,57
目的针对滥用药物分析鉴定实践中亟待解决的问题,开展LC-MS/MS分析生物检材中吗啡类生物碱的应用研究。方法满足不同的鉴定需要,分别建立血液、尿液、唾液和头发等生物检材的样品前处理方法,确定同时分析海洛因、单乙酰吗啡、吗啡、可待因、乙酰可待因、二氢可待因酮和氢吗啡酮等吗啡类生物碱的LC-MS/MS方法。将方法应用于实际案例。结果所建立的方法对吗啡类生物碱分离良好。尿液稀释法、尿液提取法和头发中吗啡的最低检测限(LOD)分别为10ng/mL、0.01ng/mL和0.01ng/mg。结论所建立的方法简便、快速、特异性强、灵敏度高。目标物中加入二氢可待因酮和氢吗啡酮扩大了方法的实用范围。  相似文献   

12.
生物检材中苯丙胺类兴奋剂和氯胺酮的LC-MS/MS分析   总被引:3,自引:2,他引:1  
目的建立生物检材中苯丙胺类兴奋剂和氯胺酮的液相色谱-串联质谱(LC-MS/MS)分析方法。方法生物检材包括血液、尿液和毛发,采用稀释法和液液提取的前处理方法,应用两个不同的液相柱,优化LC-MS/MS分析方法,并考察了血液和尿液基质的离子抑制作用。结果同时分析苯丙胺和MDA,液相1在3m in内完成,液相2可用于确认分析或复杂基质分离。尿液稀释法检材用量少,前处理简便快速。毛发中苯丙胺类兴奋剂和氯胺酮的最低检测限(LOD)为0.005~0.05ng/mg。对送检案例检材产妇头发和胎毛进行苯丙胺类兴奋剂和氯胺酮的分析。结论本方法可用于生物检材中苯丙胺类兴奋剂和氯胺酮的同时分析,血、尿等生物检材的离子抑制作用是影响本方法灵敏度的主要原因。  相似文献   

13.
LC-MS/MS测定尿液中可卡因及其代谢物苯甲酰爱康宁   总被引:4,自引:0,他引:4  
Sun QR  Xiang P  Yan H  Shen M 《法医学杂志》2008,24(4):268-272
目的建立尿液中可卡因(cocaine,COC)及其代谢物苯甲酰爱康宁(benzoylecgonine,BZE)的液相色谱-串联质谱分析方法。方法尿液经固相萃取后,用AllurePFP丙基柱分离,以V(甲醇):V(20mmol/L乙酸胺和0.1%甲酸的缓冲溶液)=80∶20为流动相,采用二级质谱多反应监测模式检测COC和BZE。按10mg/kg的剂量对豚鼠腹腔注射可卡因,给药后收集7d尿液。结果尿液中COC和BZE在2.0~100ng/mL质量浓度范围内线性关系良好(r=0.9995),最低检测限(LOD)为0.5ng/mL;回收率大于90%;日内和日间精密度均小于6%;豚鼠尿液中主要检测目标物是BZE,且BZE检测时限也较COC长。结论所建方法灵敏度高,选择性好,适用于尿液中可卡因和苯甲酰爱康宁的检测。  相似文献   

14.
目的采用固相萃取、液相色谱一串联质谱(LC-MS/MS)检验方法,考察吗啡和葡萄糖醛酸吗啡(M3G)在一例体内藏毒致急性死亡者体内分布情况。方法提取死者心血、尿、胃内容物、肝、肾、脑等15种检材,经Waters HLB小柱固相萃取后,C18色谱柱分离,采用电喷雾电离(ESI)、多反应监测模式(MRM)检测目标化合物。结果所建方法在0.0l~101μg/mL浓度范围内线性关系良好,提取回收率大于75%。结果显示总吗啡含量(游离态+结合态)在胃内容物中最高,其次是尿、‘肾,在心血、胃组织、肺和腺体中居中,脑组织和心脏含量最低。结论本例检验结果验证了胃内容物、尿液和肾脏等是该类中毒案件的理想检材,其分布规律也可作为体内毒品分析实验依据。  相似文献   

15.
In a double-blind placebo controlled study on psychomotor skills important for car driving (Study 1), a 75 mg dose of +/- 3,4-methylenedioxymethamphetamine (MDMA) was administered orally to 12 healthy volunteers who were known to be recreational MDMA-users. Toxicokinetic data were gathered by analysis of blood, urine, oral fluid and sweat wipes collected during the first 5h after administration. Resultant plasma concentrations varied from 21 to 295 ng/ml, with an average peak concentration of 178 ng/ml observed between 2 and 4h after administration. MDA concentrations never exceeded 20 ng/ml. Corresponding MDMA concentrations in oral fluid, as measured with a specific LC-MS/MS method (which required only 50 microl of oral fluid), generally exceeded those in plasma and peaked at an average concentration of 1215 ng/ml. A substantial intra- and inter-subject variability was observed with this matrix, and values ranged from 50 to 6982 ng/ml MDMA. Somewhat surprisingly, even 4-5h after ingestion, the MDMA levels in sweat only averaged 25 ng/wipe. In addition to this controlled study, data were collected from 19 MDMA-users who participated in a driving simulator study (Study 2), comparing sober non-drug conditions with MDMA-only and multiple drug use conditions. In this particular study, urine samples were used for general drug screening and oral fluid was collected as an alternative to blood sampling. Analysis of oral fluid samples by LC-MS/MS revealed an average MDMA/MDEA concentration of 1121 ng/ml in the MDMA-only condition, with large inter-subject variability. This was also the case in the multiple drug condition, where generally, significantly higher concentrations of MDMA, MDEA and/or amphetamine were detected in the oral fluid samples. Urine screening revealed the presence of combinations such as MDMA, MDEA, amph, cannabis, cocaine, LSD and psilocine in the multiple-drug condition.  相似文献   

16.
目的建立尿液中15种常见安眠镇静药物及代谢物的液相色谱-串联质谱分析方法。方法尿液经酶水解、固相萃取后,用C18液相柱分离,以含甲酸铵和甲酸的水、乙腈为流动相梯度洗脱,质谱采用电喷雾电离(ESI)-正负离子模式同时扫描,采用二级质谱多反应监测(MRM)模式检测目标化合物。结果以化合物的保留时间、两对母离子/子离子对定性,尿中常见安眠镇静药物的检测限为0.01~0.5ng/mL(ESI+)和10ng/mL(ESI-);相关系数r在0.994以上;日内及日间精密度均在18%以下;绝对回收率在64.80%~116.20%之间。结论方法快速、灵敏、简便、可靠,能同时分析尿液中的15种安眠镇静药物及其代谢物。  相似文献   

17.
A case of fatal aconitine poisoning by Monkshood ingestion   总被引:2,自引:0,他引:2  
Accidental aconitine poisoning is extremely rare in North America. This report describes the confirmation of a case of accidental aconitine poisoning using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The case involved a 25-year-old man who died suddenly following a recreational outing with friends where he consumed a number of wild berries and plants including one that was later identified as Monkshood (Aconitum napellus). Postmortem blood and urine samples were available for analysis. All routine urine and blood toxicology screens were negative. The LC-MS/MS method allowed sensitive quantification of aconitine, the main toxin in A. napellus, and showed 3.6 and 149 microg/L in blood and urine, respectively. These concentrations were similar to that reported in other aconitine-related deaths. This case illustrates the dangers of consuming unidentified plants, and documents concentrations of aconitine in blood and urine in a fatal case of A. napallus-related poisoning.  相似文献   

18.
A fully validated, sensitive and specific method for the extraction and quantification of Delta(9)-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-Delta(9)-THC (THC-COOH) and for the detection of 11-hydroxy-Delta(9)-THC (11-OH THC) in oral fluid, urine and whole blood is presented. Solid-phase extraction and liquid chromatography-mass spectrometry (LC-MS) technique were used, with electrospray ionization. Three ions were monitored for THC and THC-COOH and two for 11-OH THC. The compounds were quantified by selected ion recording of m/z 315.31, 329.18 and 343.16 for THC, 11-OH THC and THC-COOH, respectively, and m/z 318.27 and 346.26 for the deuterated internal standards, THC-d(3) and THC-COOH-d(3), respectively. The method proved to be precise for THC and THC-COOH both in terms of intra-day and inter-day analysis, with intra-day coefficients of variation (CV) less than 6.3, 6.6 and 6.5% for THC in saliva, urine and blood, respectively, and 6.8 and 7.7% for THC-COOH in urine and blood, respectively. Day-to-day CVs were less than 3.5, 4.9 and 11.3% for THC in saliva, urine and blood, respectively, and 6.2 and 6.4% for THC-COOH in urine and blood, respectively. Limits of detection (LOD) were 2 ng/mL for THC in oral fluid and 0.5 ng/mL for THC and THC-COOH and 20 ng/mL for 11-OH THC, in urine and blood. Calibration curves showed a linear relationship for THC and THC-COOH in all samples (r(2)>0.999) within the range investigated. The procedure presented here has high specificity, selectivity and sensitivity. It can be regarded as an alternative method to GC-MS for the confirmation of positive immunoassay test results, and can be used as a suitable analytical tool for the quantification of THC and THC-COOH in oral fluid, urine and/or blood samples.  相似文献   

19.
A solid-phase enzyme immunoassay involving microtiter plates was recently proposed by International Diagnostic Systems corporation (IDS) to screen for buprenorphine in human serum. The performance of the kit led us to investigate its applicability in other biological matrices such as urine or blood, and also hair specimens. Low concentrations of buprenorphine were detected with the ELISA test and confirmed by HPLC/MS (buprenorphine concentrations measured by HPLC/MS: 0.3 ng/mL in urine, 0.2 ng/mL in blood, and 40 pg/mg in hair). The intra-assay precision values were 8.7% at 1 ng/mL of urine (n = 8), 11.5% at 2 ng/mL in serum (n = 8), and 11.5% at 250 pg/mg of hair (n = 8), respectively. The immunoassay had no cross-reactivity with dihydrocodeine, ethylmorphine, 6-monoacetylmorphine, pholcodine, propoxyphene, dextromoramide, dextrometorphan at 1 and 10 mg/L, or codeine, morphine, methadone, and its metabolite EDDP. A 1% cross-reactivity was measured for a norbuprenorphine concentration of 50 ng/mL. Finally, the immunoassay was validated by comparing authentic specimens results with those of a validated HPLC/MS method. From the 136 urine samples tested, 93 were positive (68.4%) after the ELISA screening test (cutoff: 0.5 ng/mL) and confirmed by HPLC/MS (buprenorphine concentrations: 0.3-2036 ng/mL). From the 108 blood or serum samples screened, 27 were positive (25%) after the ELISA test with a cutoff value of 0.5 ng/mL (buprenorphine concentrations: 0.2-13.3 ng/mL). Eighteen hair specimens were positive (72%) after the screening (cutoff: 10 pg/mg) and confirmed by LC/MS (buprenorphine concentrations: 40-360 pg/mg). The ELISA method produced false positive results in less than 21% of the cases, but no false negative results were observed with the immunological test. Four potential adulterants (hypochloride 50 mL/L, sodium nitrite 50 g/L, liquid soap 50 mL/L, and sodium chloride 50 g/L) that were added to 10 positive urine specimens (buprenorphine concentrations in the range 5.3-15.6 ng/mL), did not cause a false negative response by the immunoassay.  相似文献   

20.
The study presents a case of fatal poisoning with oleander leaves in an adult diabetic male. After repeated vomiting, and gastrointestinal distress the patient was admitted at the hospital with cardiac symptoms 1h after the ingestion. Urine samples were assayed immunochemically and by GC-MS for drugs of abuse and for general toxicological screen. Blood was analyzed for alcohol and volatiles by static head space GC-MS. Blood and oleander leaves were analyzed by LC-MS/MS for oleandrin and related compounds, the main cardiac glycosides of Nerium oleander. Oleandrin was detected by LC-MS/MS in the blood sample at a concentration of approximately 10 ng/ml. Another cardiac glycoside with pseudo-molecular ion of m/z 577, a likely structural isomer of oleandrin, was also detected in the blood and oleander leaves. However, by using the response as a function of concentration for oleandrin, this cardiac glycoside was roughly estimated at a concentration of approximately 10 ng/ml in the deceased blood. This would give a total fatal blood concentration of cardiac glycosides of about approximately 20 ng/ml in the deceased blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号