首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In forensic DNA analysis, the samples recovered from the crime scene are often highly degraded leading to poor PCR amplification of the larger sized STR loci. To avoid this problem, we have developed STR markers with redesigned primer sequences called "Miniplexes" to produce smaller amplicons. To assess the effectiveness of these kits, we have tested these primer sets with enzymatically degraded DNA and compared the amplifications to a commercial kit. We also conducted sensitivity and peak balance studies of three Miniplex sets. Lastly, we report a case study on two human skeletal remain samples collected from different environmental conditions. In both types of degraded DNA, the Miniplex primer sets were capable of producing more complete profiles when compared to the larger sized amplicons from the commercial kit. Correct genotypes were obtained at template concentrations as low as 31 pg/25 microL. Overall, our data confirm that our redesigned primers can increase the probability of obtaining a usable profile in situations where standard kits fail.  相似文献   

2.
A new set of multiplexed PCR primers has been applied to the analysis of human skeletal remains to determine their efficacy in analyzing degraded DNA. These primer sets, known as Miniplexes, produce shorter amplicons (50-280 base pairs (bp)) than standard short tandem repeat (STR) kits, but still utilize the 13 CODIS STR loci, providing results that are searchable on national DNA databases. In this study, a set of 31 different human remains were exposed to a variety of environmental conditions, extracted, and amplified with commercial and Miniplex DNA typing kits. The amplification efficiency of the Miniplex sets was then compared with the Promega PowerPlex 16 system. Sixty-four percent of the samples generated full profiles when amplified with the Miniplexes, while only 16% of the samples generated full profiles with the Powerplex 16 kit. Complete profiles were obtained for 11 of the 12 Miniplex loci with amplicon sizes less than 200 bp. These data suggest smaller PCR amplicons may provide a useful alternative to mitochondrial DNA for anthropological and forensic analysis of degraded DNA from human skeletal remains.  相似文献   

3.
Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60‐year‐old and 400–500‐year‐old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis.  相似文献   

4.
DNA typing of degraded DNA samples can be a challenging task when using the current commercially available multiplex short tandem repeat (STR) analysis kits. However, the ability to type degraded DNA specimens improves by redesigning current STR marker amplicons such that smaller sized polymerase chain reaction (PCR) products are generated. In an effort to increase the amount of information derived from these types of DNA samples, the AmpFlSTR MiniFiler PCR Amplification Kit has been developed. The kit contains reagents for the amplification of eight miniSTRs which are the largest sized loci in the AmpFlSTR Identifiler PCR Amplification Kit (D7S820, D13S317, D16S539, D21S11, D2S1338, D18S51, CSF1PO, and FGA). Five of these STR loci (D16S539, D21S11, D2S1338, D18S51, and FGA) also are some of the largest loci in the AmpFlSTR SGM Plus kit. This informative nine-locus multiplex, which includes the gender-identification locus Amelogenin, has been validated according to the FBI/National Standards and SWGDAM guidelines. Our results demonstrate significant performance improvements in models of DNA degradation, PCR inhibition, and nonprobative samples when compared to the AmpFlSTR Identifiler and SGM Plus kits. These data support that the MiniFiler kit will increase the likelihood of obtaining additional STR information from forensic samples in situations in which standard STR chemistries fail to produce complete profiles.  相似文献   

5.
New multiplex PCR sets of commonly used short tandem repeat (STR) markers have been developed to produce PCR products that are reduced in size when compared to standard commercial STR kits. The reduction in size of these amplicons can facilitate the examination and analysis of degraded DNA evidence by improving amplification efficiency. This "miniSTR" approach will permit current forensic practitioners to use STR markers and instrumentation already present in their laboratories and to generate genotyping data that is directly comparable to reference samples and searchable through the FBI's Combined DNA Index System (CODIS) databases. This paper discusses the development of these new primer sets and presents some initial results in the analysis of degraded and aged DNA samples. A method for removal of problematic fluorescent dye artifacts is also described. Comparison studies in over 100 samples have verified that these miniSTR primers can provide fully concordant results to commercial STR kits and can provide improved signal from degraded DNA specimens. These miniplex sets should prove valuable in the analysis of samples where allele dropout and reduced sensitivity of larger STR alleles occurs.  相似文献   

6.
《Science & justice》2020,60(5):423-431
DNA samples collected at crime scenes are often degraded so this research focused on the ability of the Promega PowerPlex® Fusion 5C amplification kit to type both naturally and artificially degraded DNA.DNA was degraded naturally by placing equal volumes of blood on white fabric that was stored either inside, outside in a shaded area, or outside in direct sunlight. Samples were then collected every 10 days for 60 days and the DNA extracted (QIAamp® DNA Investigator). Artificially degraded samples were created by exposing extracted DNA to either UV light or 95 °C heat for varying times. DNA was also degraded artificially by placing blood samples into a 50% bleach solution for varying times prior to extraction.Following sample treatment, standard forensic DNA analysis was performed including quantification (Investigator® Quantiplex) and amplification (PowerPlex® Fusion 5C). Separation and detection were performed on an ABI 3130xl capillary electrophoresis unit and analysis was performed using GeneMapper ID v3.2.1.While the time and shade samples showed similar amounts of degradation, the samples exposed to direct sun showed more degradation. The artificially degraded samples showed more signs of degradation such as reduced overall peak height and peak height imbalance at heterozygous loci. There were also some cases where an allele that was known to be in the profile exhibited total dropout. Although there were some instances of both allelic dropout and heterozygote peak imbalance, PowerPlex® Fusion was able to reliably type degraded DNA as all alleles detected were consistent with the known donor profile. The results show that PowerPlex® Fusion is a robust kit capable of handling forensically challenged samples.  相似文献   

7.
The analysis of LCN or highly degraded DNA samples presents a challenge for forensic science. Improving the quantity and/or quality of samples would greatly increase the profiling success rate from LCN and degraded samples. Whole genome amplification (WGA) is one method that has such potential. Two commercially available WGA kits, GenomePlex and GenomiPhi, were investigated for use on LCN and degraded DNA samples. Both kits amplified genomic DNA, producing microgram quantities from sub-nanogram templates. Profiling success of LCN DNA samples was increased, with improvements of over 700% from 10pg template DNA compared to non-WGA-amplified control samples. The amplification success with degraded DNA was also improved by WGA. Degraded DNA was simulated using restriction enzymes to demonstrate that the application of WGA can result in the typing of STR loci that could not previously be amplified. An increase in artefacts, such as stutter alleles and amplification biases, were observed in many samples. Results show that WGA is capable of increasing both the quality and quantity of DNA, and has the potential to improve profiling success from difficult samples in forensic casework.  相似文献   

8.
Mitochondrial DNA (mtDNA) analysis of highly degraded skeletal remains is often used for forensic identification due largely to the high genome copy number per cell. Literature from the "ancient DNA" field has shown that highly degraded samples contain populations of intact DNA molecules that are severely restricted in size (1-4). Hand et al. have demonstrated the targeting and preferential amplification of authentic human DNA sequences with small amplicon products of 150 bp or less (1,2). Given this understanding of ancient DNA preservation and amplification, we report an improved approach to forensic mtDNA analysis of hypervariable regions 1 and 2 (HV1/HV2) in highly degraded specimens. This "mini-primer set" (MPS) amplification strategy consists of four overlapping products that span each of the HV regions and range from 126 to 170 bp, with an average size of 141 bp. For this study, 11 extracts representing a range of sample quality were prepared from nonprobative forensic specimens. We demonstrate a significant increase in MPS amplification success when compared to testing methods using approximately 250 bp amplicons. Further, 16 of 17 independent amplifications previously "unreported" due to mixed sequences provided potentially reportable sequence data from a single, authentic template with MPS testing.  相似文献   

9.
Abstract: DNA amplification is a fundamental yet costly process used in DNA analysis. This study evaluated half‐reaction amplification (12.5, 12, and 13 uL) using the Promega Powerplex® 16 Kit with the hope of reducing sample analysis costs by half. A sensitivity study was completed, along with the testing of various blood stain samples including those with low (<0.40 ng) and high DNA concentrations (>3.0 ng), peak height imbalances, and allelic drop‐out. Also, 467 samples submitted to the MUFSC laboratory for testing were analyzed. Results indicate that half‐reaction amplification produced higher quality profiles than full‐reactions. Average peak heights increased by 85%, peak height imbalances improved, and drop‐out was eliminated in 75.8% of samples. Only eight of 467 case samples required re‐amplification, a success rate of 94% was observed, and the repeat rate decreased significantly. Finally, a DNA input of 0.25–1.0 ng is ideal for half‐reaction amplification.  相似文献   

10.
A duplex real-time qPCR assay was developed for quantifying human nuclear and mitochondrial DNA in forensic samples. The nuclear portion of the assay utilized amplification of a approximately 170-190 bp target sequence that spans the repeat region of the TH01 STR locus, and the mitochondrial portion of the assay utilized amplification of a 69 bp target sequence in the ND1 region. Validation studies, performed on an ABI 7000 SDS instrument using TaqMan detection, demonstrated that both portions of the duplex assay provide suitable quantification sensitivity and precision down to 10-15 copies of each genome of interest and that neither portion shows cross-reactivity to commonly encountered non-human genomes. As part of the validation studies, a series of DNase-degraded samples were quantified using three different methods: the duplex nuclear-mitochondrial qPCR assay, the ABI Quantifiler Human DNA Quantification Kit qPCR assay, which amplifies and detects a 62 bp nuclear target sequence, and slot blot hybridization. For non-degraded and moderately degraded samples in the series, all three methods were suitably accurate for quantifying nuclear DNA to achieve successful STR amplifications to yield complete profiles using the ABI AmpFlSTR Identifiler kit. However, for highly degraded samples, the duplex qPCR assay provided better estimates of nuclear template for STR amplification than did either the commercial qPCR assay, which overestimated the quantity of STR-sized DNA fragments, leading to an increased proportion of undetected alleles at the larger STR loci, or slot blot hybridization, which underestimated the quantity of nuclear DNA, leading to an increased proportion of STR amplification artifacts due to amplification of excess template.  相似文献   

11.
The performance of two commercial multiplex kits that together amplify the 13 core short tandem repeat (STR) loci currently in use by forensic laboratories and the U.S. national Combined DNA Indexing System (CODIS) were evaluated. The typing systems examined were AmpFlSTR Profiler Plus and AmpFlSTR COfiler (PE Applied Biosystems, Foster City, CA). Electrophoretic separation and detection of the fluorescent PCR products was achieved by capillary electrophoresis (CE) using an ABI Prism 310 Genetic Analyzer. The studies addressed the on-site validation of the instrument, the software, and each typing system. These studies included instrument sensitivity, resolution, precision, binning, peak height ratios, mixtures, stutter, and the amplification of non-probative and simulated forensic samples. Other additional developmental-type work is also reported herein, such as species specificity testing and amplification of environmentally insulted samples. Amplification conditions were found to be robust and the primer sets shown to be specific to human DNA. Stutter and peak height ratios fell within limits published by the manufacturer and other laboratories. The data demonstrate that the CE instrument can consistently resolve fragments differing in length by one base and that the +/-0.5 base bin used by the Genotyper software is acceptable for making accurate allele calls. Correct typing results were obtained from non-probative and simulated case samples, as well as samples exposed to outdoor environmental conditions. The results support the conclusion that DNA extracted from biological samples routinely encountered in the forensic laboratory can be reliably analyzed with AmpFlSTR Profiler Plus and COfiler using CE.  相似文献   

12.
CYP2D6 polymorphism analysis is gaining increasing interest in forensic pharmacogenetics. Nevertheless, DNA recovered from forensic samples could be of poor quality and not suitable for long polymerase chain reaction required to type CYP2D6 gene prior to SNaPshot minisequencing analysis performed to define alleles with different enzymatic activity. We developed and validated following the guidelines of the Scientific Working Group on DNA Analysis Methods a tetraplex PCR yielding four amplicons of 597, 803, 1142, and 1659 bp encompassing the entire CYP2D6 gene to analyze eleven SNP positions by SNaPshot minisequencing. Concordance, sensitivity, and specificity were assessed. The method, applied to thirty‐two forensic samples failed to amplify with long PCR, allowed the amplification of CYP2D6 gene in 62.5% of degraded samples. The new tetraplex PCR appears a suitable method for CYP2D6 analysis in forensic pharmacogenetics.  相似文献   

13.
目的建立扩增片段<135bp,包括D5S818,D8S1179,D16S539 3个miniSTR基因座复合扩增系统。方法采用不同荧光染料标记引物,通过PCR扩增,利用ABI 3100遗传分析仪进行片段长度分析,对100份无关个体血样,10个家系样本以及30份高度降解检材进行检测。结果本系统DNA分型结果与AmpFLSTR Identifiler试剂盒完全一致,且灵敏度高于AmpFLSTR Identifiler试剂盒。结论本系统可以应用于个人识别和亲权鉴定,为降解DNA样本分型提供了新的方法。  相似文献   

14.
STR位点D19S253和D8S1179的法医学意义及应用研究   总被引:1,自引:0,他引:1  
为评估STR位点D19S253和D8S1179的法医学应用价值,应用PCR和PAG垂直电泳技术对两位点的种属特异性,检测灵敏度,以及同一个体不同组织分型的同一性及不同基质和不同保存时间的斑痕分型等与法医应用有关的问题进行了研究,D19S253和D8S1179位点的检测灵敏度分别为0.25ng及0.5ng,同时两位点具有较高的种属特异性,同一性及较好重复性,且能够复合扩增,表明D19S253和D8S1179是法医学检案中较实用的两个STR标记。  相似文献   

15.
荧光标记短片段STR复合扩增系统的法医学应用研究   总被引:2,自引:0,他引:2  
目的解决严重降解(低于300bp)DNA检验问题,提高降解DNA的检出率。方法重新设计引物,减小扩增产物片段长度,用荧光标记短片段STR复合扩增体系进行DNA检验,扩增结果与用Identifiler试剂盒扩增出的结果进行比较。结果用荧光标记短片段STR复合扩增系统对实际案件中的高度降解DNA检材进行检验,可以获得满意分型。结论该系统可用于严重降解DNA检材的检验工作。  相似文献   

16.
Abstract: We have developed a concept to enable the analyzing of degraded stains with limited DNA template quantity. Therefore we have constructed a short tandem repeat (STR) multiplex including the German DNA database systems (Q8). The amplicon lengths are smaller than 280 bp. For the validation of Q8 over 50 degraded samples were investigated. Amplifications were performed with “low copy number” PCR, the number of PCR cycles was increased to 33 and the reaction volume was decreased to 12.5 μL. Compared with the MPX2 and Nonaplex kit, the average success rate was increased using the Q8 kit by approximately 20% and 30%, respectively. The efficiency of a sensitive STR multiplex with reduced amplicon lengths was confirmed in comparing the success rates of Q8 for typing degraded samples and samples with limited amount of DNA template while partial profiles were observed with the majority of the samples using commercially available kits.  相似文献   

17.
An additional 20 novel mini-short tandem repeat (miniSTR) loci have been developed and characterized beyond the six previously developed by our laboratory for a total of 26 non-CODIS miniSTR markers. These new markers produce short PCR products in the target range of 50-150 base pairs (bp) by moving the primer sequences as close as possible-often directly next to the identified repeat region. These candidate loci were initially screened based on their small amplicon sizes and locations on chromosomes currently unoccupied by the 13 CODIS STR loci or at least 50 Mb away from them on the same chromosome. They were sequenced and evaluated across more than 600 samples, and their population statistics were determined. The heterozygosities of the new loci were compared with those of the 13 CODIS loci and all were found to be comparable. Only five of the new loci had lower values than the CODIS loci; however, all of these were much smaller in size. This data suggests that these 26 miniSTR loci will serve as useful complements to the CODIS loci to aid in the forensic analysis of degraded DNA, as well as missing persons work and parentage testing with limited next-of-kin reference samples.  相似文献   

18.
Additional STR loci can be beneficial for a number of human identity, forensic casework, and DNA database applications. The marker selection and characterization process applied at NIST in developing these new loci and assays are described along with concordance testing results from non-overlapping PCR primers. A 23plex for simultaneous amplification of 22 autosomal STR loci and an amelogenin sex-typing assay is also demonstrated.  相似文献   

19.
Degradation of human DNA extracted from forensic stains is, in most cases, the result of a natural process due to the exposure of the stain samples to the environment. Experiences with degraded DNA from casework samples show that every sample may exhibit different properties in this respect, and that it is difficult to systematically assess the performance of routinely used typing systems for the analysis of degraded DNA samples. Using a batch of artificially degraded DNA with an average fragment size of approx. 200 bp a collaborative exercise was carried out among 38 forensic laboratories from 17 European countries. The results were assessed according to correct allele detection, peak height and balance as well as the occurrence of artefacts. A number of common problems were identified based on these results such as strong peak imbalance in heterozygous genotypes for the larger short tandem repeat (STR) fragments after increased PCR cycle numbers, artefact signals and allelic drop-out. Based on the observations, strategies are discussed to overcome these problems. The strategies include careful balancing of the amount of template DNA and the PCR cycle numbers, the reaction volume and the amount of Taq polymerase. Furthermore, a careful evaluation of the results of the fragment analysis and of automated allele calling is necessary to identify the correct alleles and avoid artefacts.  相似文献   

20.
There is a growing interest among forensic geneticists in developing efficient protocols for genotyping coding region mitochondrial DNA (mtDNA) SNPs (mtSNPs). Minisequencing is becoming a popular method for SNP genotyping, but it is still used by few forensic laboratories. In part, this is due to the lack of studies testing its efficiency and reproducibility when applied to real and complex forensic samples. Here we tested a minisequencing design that consists of 71 mtSNPs (in three multiplexes) that are diagnostic of known branches of the R0 phylogeny, in real forensic samples, including degraded bones and teeth, hair shafts, and serial dilutions. The fact that amplicons are short coupled with the natural efficiency of the minisequencing technique allow these assays to perform well with all the samples tested either degraded and/or those containing low DNA amount. We did not observe phylogenetic inconsistencies in the 71 mtSNP haplotypes generated, indicating that the technique is robust against potential artefacts that could arise from unintended contamination and/or spurious amplification of nuclear mtDNA pseudogenes (NUMTs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号