首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的比较M48和DNeasy○R plant Mini两种方法提取汗潜手印DNA的优劣。方法用M48和DNeasy○Rplant Mini两种方法分别提取16对汗潜手印DNA,并进行DNA定量,比较定量结果。结果 M48法明显比plant Mini法提取到的DNA量多(配对t检验:α=0.05,t=3.45,γ=15,0.002  相似文献   

2.
Amplified fragment length polymorphism (AFLP) analysis of botanical forensic evidence provides a means of obtaining a reproducible DNA profile in a relatively short period of time in species for which no sequence information is available. AFLP profiles were obtained for 40 Acer rubrum trees. Leaf material from five additional species was also typed. Genomic DNA was isolated using the DNeasy Plant Miniprep Kit (Qiagen, Valencia, CA), double-digested by two restriction endonucleases (EcoRI and MseI) and ligated to oligonucleotide adapters. Two consecutive PCR reactions (pre-amplification and selective amplification) were performed using a modification of the AFLP protocol described by Gibco (Invitrogen, Rockville, MD). The DNA fragments were separated by capillary electrophoresis using the CEQ 8000 DNA Fragment Analyzer. A number of Acer rubrum species-specific peaks were identified. In addition, within this closed set of samples, 15 of 16 (93.8%) blind samples were correctly identified. AFLP data can be used to determine the species of botanical evidence or to associate a sample to a source. This information can be used in forensic investigations to link a piece of evidence with a particular location or suspect.  相似文献   

3.
The use of a QIAamp DNA Stool Mini Kit (QIAGEN) for extracting human nuclear DNA from feces samples is reported. This method employs a stool lysis buffer and a unique matrix (InhibitEX tablet) to remove PCR inhibitory substances specific to feces samples. DNA extracted from various amounts of stool and from stool samples exposed to different environmental impacts was successfully amplified and typed using the Profiler Plus Amplification Kit and ABI PRISM 310 Genetic Analyser.  相似文献   

4.
《Science & justice》2021,61(5):573-578
The successful isolation of DNA (Deoxyribonucleic Acid) is essential for the investigation process of forestry molecular genetics. Samples used are usually retrieved either from soft or juvenile plant organs because of their excellent DNA source. However, in certain cases, aforesaid samples are hard to obtain, as for forensic purposes. Alternatively, woods possess potential as alternative source of DNA whose extraction method has been developed with varying degrees of success. However, to date, effectiveness on tropical wood grown in Indonesia has not been widely reported. Therefore, objective of this study was to compare the results of DNA isolation of various dried and fresh wood samples by using two isolation methods: Cetyl Trimethyl Ammonium Bromide (CTAB) and Qiagen DNeasy Plant Mini Kit (QDPMK). Extraction results were visualized in agarose gels and quantified using Nanophotometer NP80 Implen which were then amplified using two universal primers: ITS and rbcL for detecting DNA signals. Extraction results from dried wood indicated no visualization in the gel, while fresh wood samples showed thick smeared bands on both extraction methods. Quantity test results denoted higher concentration in CTAB-extracted samples compared to samples extracted using QDPMK, in both types of samples, even though both resulted in optical density ratios outside the range of purity (λ260/280: 1,8–2,0 and λ260/230: 2,0, respectively). Success rates of ITS and rbcL primary amplification in dried wood samples were quite low yet outputs from the two methods did not differ significantly. Meanwhile, outcome of ITS and rbcL amplification on fresh wood samples had a fairly high success.  相似文献   

5.
Cannabis sativa L. is a plant cultivated worldwide as a source of fiber, medicine and intoxicant. Traditionally, is divided into two main types: fiber type (hemp) and drug type (marijuana). Marijuana differs from hemp by the presence of a high quantity of the psychoactive drug, Δ9-tetrahydrocannabinol. The development of a validated method using short tandem repeats (STRs) could serve as an intelligence tool to link cases by means of genetic individualization or association of cannabis samples. For this purpose, a 13-locus STR multiplex method was developed, optimized, and validated by the Department of Forensic Science at Sam Houston State University (SHSU) according to relevant ISFG and SWGDAM guidelines. The European community considers C. sativa plants illegals, even though its consumption is accepted in precise and limited places (coffee shops or cannabis clubs in Netherlands and Spain). However, there are different gaps in the legislation of some European countries. For instance, in Italy, “weed” possession is decriminalized. Although trafficking and sale are prohibited, possession of small quantities of marijuana is considered only a civil offense. In order to proceed with the kit evaluation and inter-laboratory comparison, SHSU DNA laboratory sent blind cannabis DNA samples of known genotypes. Blind DNA samples were analyzed in different laboratories with different sequencers and analysis conditions. In this article, the goals were: a) to demonstrate that 13-locus STR kit for C. sativa is robust enough and reproducible, in all forensic laboratories, and b) to show the applicability of the STR system in association with Cannabis sativa cases for intelligence purposes to link multiple cases by means of genetic individualization or association of cannabis samples.  相似文献   

6.
Cannabis sativa L. (Cannabaceae) is one of the earliest known cultivated plants and is important in the global economy today as a licit and an illicit crop. Molecular markers distinguishing licit and illicit cultivars have forensic utility, but no direct comparison of hemp and marijuana amplified fragment length polymorphism (AFLP) has been made to date. Genetic variation was surveyed in three populations of fiber hemp and a potent cultivar of marijuana using AFLP markers. Ten primer pairs yielded 1206 bands, of which 88% were polymorphic. Eighteen bands represented fixed differences between all fiber populations and the drug cultivar. These markers have practical utility for (1) establishing conspiracy in the cultivation and distribution of marijuana, (2) identifying geographic sources of seized drugs, and (3) discriminating illegal, potent marijuana cultivars from hemp where the cultivation of industrial hemp is permitted.  相似文献   

7.
The validity and feasibility of using DNA collection cards in the field for preservation and analysis of Cannabis sativa genotypes were investigated using a highly specific hexanucleotide marker. Collection cards were submitted to the National Marijuana Initiative, which selectively trained and managed the collection of specific types of samples from a variety of participating agencies. Samples collected at seizure sites included fresh marijuana leaf samples, dried "dispensary" samples, U.S. border seizures, and hashish. Using a standardized PCR kit with custom-labeled oligonucleotide primers specific to marijuana, collection cards produced eight genotypes and 13 different alleles, extremely low baselines, and no cross-reactivity with control plant species. Results were produced from all sample types with the exception of hashish. Plant DNA collection cards represent an easily implementable method for the genetic identification and relatedness of C. sativa street and grow site-seized samples with applications for databasing and market disruption.  相似文献   

8.
Legal limits on the psychoactive tetrahydrocannabinol (THC) content in Cannabis sativa plants have complicated genetic and forensic studies in this species. However, Cannabis seeds present very low THC levels. We developed a method for embryo extraction from seeds and an improved protocol for DNA extraction and tested this method in four hemp and six marijuana varieties. This embryo extraction method enabled the recovery of diploid embryos from individual seeds. An improved DNA extraction protocol (CTAB3) was used to obtain DNA from individual embryos at a concentration and quality similar to DNA extracted from leaves. DNA extracted from embryos was used for SSR molecular characterization in individuals from the 10 varieties. A unique molecular profile for each individual was obtained, and a clear differentiation between hemp and marijuana varieties was observed. The combined embryo extraction–DNA extraction methodology and the new highly polymorphic SSR markers facilitate genetic and forensic studies in Cannabis.  相似文献   

9.
The purpose of this study was to compare the effectiveness of the QIAGEN QIAamp Stool Mini Kit against a standard phenolchloroform procedure for the extraction, quantitation, and STR-typing of human nuclear DNA from human feces. Stools from six subjects were sampled by swabbing and excision. Samples extracted with the QIAamp kit gave a wide range of DNA yields, whereas those extracted by the organic method yielded no DNA. DNA was not recovered from one subject's stools by either procedure. The QIAamp extracts were amplified with the Profiler Plus and COfiler kits, and PCR inhibition was observed with DNA extracts that were further concentrated. Substitution of water or TE-4 for the QIAamp elution buffer eliminated most, if not all, of the inhibition. A modified QIAamp procedure was used to extract thirty samples, which were subjected to one of five environmental conditions. DNA was recovered from all of these samples, and typing results were obtained on 93% of the samples.  相似文献   

10.
Abstract: The quality and efficiency of a standard organic DNA isolation method and a silica‐based method using the QIAGEN Blood Maxi Kit were compared to obtain human DNA and short tandem repeats (STRs) profiles from 39 exhumed bone samples for paternity testing. DNA samples were quantified by real‐time PCR, and STR profiles were obtained using the AmpFlSTR® Identifiler® PCR amplification kit. Overall, the silica‐based method recovered less DNA ranging from 0 to 147.7 ng/g (average 7.57 ng/g, median = 1.3 ng/g) than did the organic method ranging from 0 to 605 ng/g (average 44.27 ng/g, median = 5.8 ng/g). Complete profiles (16/16 loci tested) were obtained from 37/39 samples (95%) using the organic method and from 9/39 samples (23%) with the silica‐based method. Compared with a standard organic DNA isolation method, our results indicate that the published silica‐based method does not improve neither the quality nor the quantity of DNA for STR profiling.  相似文献   

11.
Analysis of forensic samples to evaluate the rate of success for molecular markers: autosomal STRs, Y chromosome, and mitochondrial DNA. Since 2006 to date a total of 390 forensic samples were analyzed: bones, teeth, hairs, swabs, stains and paraffin embedded tissue. Bones and teeth, were pulverized in a Freezer Mill, extracted by chloroform/phenol/isoamyl alcohol method, and then purified with Centricon 100 columns. DNA from paraffin was extracted with QIAmp DNA Mini kit (QIAGEN). Mitochondrial DNA Control Region sequences were determined for regions HV1/HV2. Sequencing was performed using the BigDye® Terminator v 1.1 Kit and analyzed in ABIPRISM® 3100 Genetic Analyzer (AB). STRs were amplified using Amp FlSTR Identifiler®, Minifiler® and YFiler® Kit (AB) and analyzed in ABI PRISM® 3100 Genetic Analyzer and ABI PRISM® 3130xl Genetic Analyzer (AB). Among forensic samples, bones and teeth analyzed for autosomal STRs, we obtained successful results in all of them. Incomplete typing are represented by loci of higher molecular weight, which demonstrates the poor quality of the sample due to its state of degradation and obtained better results using mini STRs. Successful results in sequencing for mitochondrial HV1 region for all samples analyzed, but in few hair samples we obtained mixed sequences and that represented important difficulties for the analysis. Age of samples and conservation are factors related which affect DNA viability. Autosomal STRs solved all the samples analyzed in our study, but Y chromosome analysis and mitochondrial DNA sequencing are also important and necessary markers in some forensic cases.  相似文献   

12.
A quick, simple, and high-yield nucleic acid isolation process is crucial for high-quality DNA analysis. The ability of the MicroGEM PDQeX phytoGEM system and Omega Bio-tek E.Z.N.A.® Plant DS Mini kit to extract PCR-ready DNA was evaluated by extracting the forensically relevant “legal high” plant species: Ipomoea purpurea, Artemisia absinthium, Mitragyna speciosa, Datura stramonium, and Papaver somniferum. The plant material was pulverized, processed using the manufacturer’s plant protocol for the PDQeX Nucleic Acid Extraction or the manufacturer’s protocol for the Omega extraction, quantified using the Invitrogen Qubit 2.0 Fluorometer, and analyzed for amplifiability by PCR using a Qiagen Rotor-Gene Q instrument and published assays. The DNA amplicons for the legal high species produced high-resolution melt curves concordant with the melts observed when DNA was isolated using the Qiagen DNeasy Plant Mini Kit in previous studies.  相似文献   

13.
国产磁珠结合自动化工作站批量提取生物检材DNA的应用   总被引:7,自引:4,他引:3  
目的建立国产磁珠结合自动化工作站批量提取案件中生物检材DNA的方法。方法采用国产磁珠结合Bio-Robert Universal System自动化工作站对案件中常见的生物样本进行DNA提取,检测Identifiler系统16个STR基因座,在ABI3130XL遗传分析仪上进行STR分型。其中210份样品同时在ABI7500型荧光定量PCR仪上进行定量。结果9100份10类生物检材应用国产磁珠结合自动化工作站,大部分可提取到足够的DNA进行STR检验。STR检验成功率最高的为口腔拭子、肌肉,达100%,接触细胞检材的成功率较低,为50.0%。结论国产磁珠结合自动化工作站可用于案件中常见的大部分生物样本的DNA提取。  相似文献   

14.
全基因组扩增法应用于低拷贝数DNA检测   总被引:6,自引:3,他引:3  
Zhou HG  Zhang C 《法医学杂志》2006,22(1):43-44,47
目的建立基于多重置换扩增(MDA)技术的全基因组扩增(WGA)方法,实现对低拷贝数(LCN)DNA样品进行分析。方法采用REPLI-g试剂盒对样本进行等温全基因组扩增,扩增产物采用ProfilerPlus试剂盒确定样本的十个STR基因座的等位基因型。结果10pgDNA模板经全基因组扩增后,能够进行DNA分型。结论全基因组扩增可以用于LCN的DNA分析,帮助提高微量物证的检出成功率。  相似文献   

15.
The unusual concentration of cannabinoids recently found in marijuana samples submitted to the forensic laboratory for chemical analysis prompted an investigation into whether genetic modifications have been made to the DNA of Cannabis sativa L. to increase its potency. Traditional methods for the detection of genetically modified organisms (GMO) were used to analyze herbal cannabis preparations. Our analyses support the hypothesis that marijuana samples submitted to forensic laboratories and characterized by an abnormal level of Δ(9)-THC are the product of breeding selection rather than of transgenic modifications. Further, this research has shown a risk of false positive results associated with the poor quality of the seized samples and probably due to the contamination by other transgenic vegetable products. On the other hand, based on these data, a conclusive distinction between the hypothesis of GMO plant contamination and the other of genetic modification of cannabis cannot be made requiring further studies on comparative chemical and genetic analyses to find out an explanation for the recently detected increased potency of cannabis.  相似文献   

16.
A method is described to identify an unknown sample of plant material of forensic interest as Cannabis sativa L. The method consists in comparing the sequence of the nuclear ribosomal DNA Internal Transcribed Spacer I (ITS1) of the unknown sample with a Cannabis sequence. Our preliminary results show that the ITS1 is an ideal molecule for the identification of a sample suspected to be marijuana.  相似文献   

17.
STR profiling using hard tissues obtained from a severely decomposed body is sometimes a laborious work. There is now on a market a new DNA extraction kit, PrepFiler™ Forensic DNA Extraction Kit (AppliedBiosystems), and we tested it for missing persons. Postmortem intervals ranged from weeks to several years. Fifteen bone fragments and eleven nails were used in this report. Genomic DNA was quantified by QuantiFiler® DUO Quantification Kit (AppliedBiosystems), and STRs were analyzed using AmpFlSTR® Identifiler® PCR Amplification Kit (AppliedBiosystems). The profiling of 16 STR loci was successful in all nail samples. However, STR profiling was successful in only 6 of 15 bone materials. Nine cases failed to analyze STR polymorphisms using another DNA extraction kit, the QIAamp DNA Mini Kit (QIAGEN). For bone samples, it seems that STR profiling depends on the quality of samples.  相似文献   

18.
目的研究利用DNA条形码技术鉴定上海地区常见植物叶片种类,在物种鉴定水平的基础上,进一步讨论利用分子标记技术对该类物证进行同一认定可行性。方法随机选取上海地区常见的9种植物,在其非新鲜的状态下利用高盐法提取植物组织的DNA,PCR扩增叶绿体rbcL和matK基因片段并且回收测序,通过数据库比对确定植物的物种。结果利用双基因鉴定分析系统,在随机收集的9份样品中,均达到物种水平的鉴定。结论利用DNA条形码技术,可以在物种水平准确地鉴定植物叶片类物证。  相似文献   

19.
Cannabis products (marijuana, hashish, cannabis oil) are the most frequently abused illegal substances worldwide. Delta-9-tetrahydrocannabinol (THC) is the main psychoactive component of Cannabis sativa plant, whereas cannabidiol (CBD) and cannabinol (CBN) are other major but no psychoactive constituents. Many studies have already been carried out on these compounds and chemical research was encouraged due to the legal implications concerning the misuse of marijuana. The aim of this study was to determine THC, CBD and CBN in a significant number of cannabis samples of Albanian origin, where cannabis is the most frequently used drug of abuse, in order to evaluate and classify them according to their cannabinoid composition. A GC-MS method was used, in order to assay cannabinoid content of hemp samples harvested at different maturation degree levels during the summer months and grown in different areas of Albania. This method can also be used for the determination of plant phenotype, the evaluation of psychoactive potency and the control of material quality. The highest cannabinoid concentrations were found in the flowers of cannabis. The THC concentrations in different locations of Albania ranged from 1.07 to 12.13%. The influence of environmental conditions on cannabinoid content is discussed. The cannabinoid content of cannabis plants were used for their profiling, and it was used for their classification, according to their geographical origin. The determined concentrations justify the fact that Albania is an area where cannabis is extensively cultivated for illegal purposes.  相似文献   

20.
Li CT  Li L 《法医学杂志》2008,24(5):375-377
扩增片段长度多态性(amplified fragment length polymorphism,AFLP)是一种用来检测基因组多态性的新一代分子标记,具有分辨率高、稳定性好、重复性好等特点.近年来,研究人员对该技术进行了不断的优化和完善,并由之衍生出多种相关技术.AFLP技术在动物、植物及微生物等许多研究领域已有广泛应用,在法医植物学中得到初步发展并成为研究热点.本文主要介绍了AFLP技术的新进展以及在法医植物学中的应用情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号