首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
HS-SPME-GC/MS法检测尿液及毛发中苯丙胺类毒品   总被引:1,自引:1,他引:0  
目的采用顶空固相微萃取(HS-SPME)、GC/MS分析方法,对生物样品中苯丙胺(AM)、甲基苯丙胺(MAM)、3,4-亚甲二氧基苯丙胺(MDA)和3,4-亚甲二氧基甲基苯丙胺(MDMA)4种苯丙胺类毒品进行定性定量分析。方法在碱性和饱和盐处理状态下,采用100μm聚二甲基硅氧烷(PDMS)萃取纤维,于顶空瓶中进行生物样品AM、MAM、MDA、MDMA 4种毒品萃取,以2-甲基苯乙胺为内标,经气-质联用选择离子检测(GC/MS/SIM)模式进行定性定量分析。对HS-SPME条件优化,对方法的精密度、准确度和检出限进行测定。结果 AM、MAM、MDA、MDMA 4种毒品尿液中的最低检出限为5ng/mL,毛发中的最低检出限为0.5ng/mg。尿液中线性关系范围为0.05μg/mL~5μg/mL,r〉0.991,回收率为82%~108%,RSD为2.6%~6.1%(n=5);毛发中线性关系范围为5ng/mg~500ng/mg,r〉0.992,回收率为80%~113%,RSD(%)为1.4%~6.8%(n=5)。结论 HS-SPME-GC/MS各项定量参数符合分析要求。该方法简单、灵活、经济、快速、无溶剂,适用于生物检材中该类毒品的分析。  相似文献   

2.
《中国法医学杂志》2019,(3):252-256
目的采用电场促进下的固相微萃取(EE-SPME)-GC/MS分析方法,对尿中苯丙胺(AM)、甲基苯丙胺(MA)、3,4-(亚甲二氧基)苯丙胺(MDA)、3,4-(亚甲二氧基)甲基苯丙胺(MDMA)和3,4-(亚甲二氧基)乙基苯丙胺(MDEA)5种苯丙胺类兴奋剂进行定性定量分析。方法通过向萃取纤维附近引入阴极,促使样品溶液中的目标物阳离子向萃取纤维附近迁移,从而提高了PDMS涂层在温和条件下对苯丙胺类兴奋剂的萃取效率。对EE-SPME条件进行优化,以4-苯基丁胺(4-PBA)为内标,在气-质仪联用选择离子检测(GC/MS/SIM)模式下进行定性定量分析。结果本方法的检出限为0.1~1.2ng/mL,线性范围为1~200ng/mL,相关系数为0.990~0.997,三个加标水平(5、50、100ng/mL)下的回收率为86%~110%,精密度可达3.6%~8.7%。结论该方法灵敏、准确、对环境绿色友好,并且操作简便。  相似文献   

3.
苯丙胺类兴奋剂的法医毒理学研究进展   总被引:3,自引:2,他引:1  
<正> 苯丙胺类兴奋剂(amphetamine-type stimulants,ATS)是指苯丙胺及其同类衍生物,包括苯丙胺(amphetamine,AM)、甲基苯丙胺(methamphetamine,MAM)、3,4-亚甲二氧基苯丙胺(3,4-methylenedioxyamphetamine,MDAM)、3,4-亚甲二氧基甲基苯丙胺(3,4.methylenedioxyamphetamine,MDMA)、麻黄素(ephedrine)、芬氟拉明(phenfluramine)等数十种化合物,它们均对中枢神经系统有兴奋作用,其中MDAM、MDMA等兼有致幻作用。  相似文献   

4.
超高效液相色谱-MS/MS法测定血中11种苯丙胺类物质   总被引:1,自引:1,他引:0  
目的应用超高效液相色谱-质谱法对全血中11种苯丙胺类毒品进行定量测定。方法全血样品经1%(v/v)甲酸-乙腈提取,采用Ostra磷脂过滤板净化处理,使用ACQUITY UPLC BEH Phenyl(100mm×2.1mm,1.7μm)色谱柱,以0.3%(v/v)甲酸溶液-乙腈为流动相进行梯度洗脱。在多反应监测模式下测定全血样本中苯丙胺、甲基苯丙胺、二亚甲基双氧苯丙胺、替苯丙胺、3,4-亚甲基二氧基乙基苯丙胺、N-甲基-1-(3,4-亚甲二氧基苯基)-2-丁胺、副甲氧基甲基苯丙胺、麻黄碱、甲基麻黄碱、卡西酮、甲卡西酮,并进行方法学考察。结果 11种苯丙胺类物质的检出限(S/N≥3)为0.01~0.4ng/m L,在0.5~50μg/L范围内线性关系良好(r0.999);回收率在75.8%~103.4%之间,相对标准偏差在1.6%~13.0%之间。结论本文建立的超高效液相色谱-质谱法快速、简便、灵敏,适用于中毒案件检验及吸毒人员排查。  相似文献   

5.
本文建立了尿中3,4亚甲二氧基甲基苯丙胺(MDMA)的五氟苯甲酰衍生化-氮磷检测气相色谱分析方法,1ml检尿碱化、加氯化钠饱和、用0.2ml环己烷提取,提取液加4μl五氟苯甲酰氯于室温反应10min,过量试剂用0.1mol/L氢氧化钠溶液涡洗除去,有机相供进样分析.尿中MDMA的检测限为4.0ng/ml,较非衍生化、乙酰化、三氟乙酰化、五氟丙酰化和七氟丁酰衍生化等分析法灵敏.  相似文献   

6.
顶空固相微萃取气相色谱法快速检测尿液中氯胺酮   总被引:1,自引:1,他引:0  
目的建立快速检测吸毒人员尿液中氯胺酮的顶空固相微萃取(HS/SPME)-GC/NPD的方法。方法样品瓶中加入尿液、氢氧化钠溶液、氯化钠,在95℃下加热搅拌,用聚二甲基硅氧烷SPME萃取头(100μm)顶空萃取20min,气相色谱氮磷检测器检测,外标法定量。结果尿液中氯胺酮浓度在0.2~20.0μg/ml范围内呈现线性关系(r2=0.9965),尿液添加1.0μg氯胺酮,平均回收率102.6%,RSD=3.39%(n=7),检测限1.13ng/ml(S/N=3)。结论建立的方法简单、快速、灵敏、准确,十分适合尿液等生物检材中氯胺酮的快速定性定量分析。  相似文献   

7.
姜宴  沈敏  赵子琴 《法医学杂志》2002,18(4):252-255
对近几年国内外22篇有关生物检材中甲基苯丙胺及苯丙胺测定的文献进行了综述。介绍了血、尿、毛发等生物检材的收集与预处理方法,比较了生物检材中甲基苯丙胺及苯丙胺的液-液萃取(LLE)、固相萃取(SPE)、固相微萃取(SPME)和顶空固相微萃取(HS-SPME)等提取方法,以及内标的选取、不同的衍生化方法和包括免疫、GC/MS、GC/NPD、GC/ECD、GC/FID、HPLC、HPCE在内的各种检测方法。最后,对分析结果的评定进行了讨论。  相似文献   

8.
本文介绍了常见安非他明类兴奋利AM(安非他明)、MAM(甲基安非他明)、MDA(3,4-亚甲二氧基安非他明)、MDMA(3,4-亚甲二氧基甲基安非他明)的毒性、中毒症状以及近十年生物样品中原体和代谢物分析方法的研完成果,重点介绍GC、GC/MS和HPLC的检测方法。  相似文献   

9.
目的考察司来吉兰及其代谢物在尿液中的含量变化,并结合实际案例探讨手性分析区分甲基苯丙胺滥用与司来吉兰服用的可行性。方法采用CHIROBIOTICTM V2手性液相色谱柱对尿液样品进行手性分离和液相色谱-串联质谱(LC-MS/MS)法测定,并对司来吉兰服药志愿者尿样、疑服用司来吉兰的涉毒人员尿样进行甲基苯丙胺和苯丙胺的手性分析。结果服用5 mg司来吉兰后,尿液中司来吉兰的检出时限仅为7h。尿液中R(-)-甲基苯丙胺和R(-)-苯丙胺约在7h质量浓度最高,分别为0.86μg/m L和0.18μg/m L,并在80 h和168 h后无法检出。应用该方法成功分析了疑服用司来吉兰的涉毒人员尿液中甲基苯丙胺和苯丙胺的来源。结论甲基苯丙胺和苯丙胺的手性分析以及司来吉兰代谢物检测可区分甲基苯丙胺滥用与司来吉兰服用。  相似文献   

10.
SPE/UPLC法检测血中吗啡、苯丙胺类及氯胺酮   总被引:1,自引:0,他引:1  
目的建立SPE/UPLC方法在同一条件下同时检测血中吗啡、苯丙胺类及氯胺酮。方法采用SCX 3cc(60mg)固相萃取柱萃取血中吗啡、MA、MDMA、MDA及氯胺酮,用超高效液相色谱(UPLC)-二极管阵列检测器(PDA)检测,结合保留时间和紫外光谱进行定性、定量分析,对实验各环节进行优化,并进行实际案例检测。结果吗啡、MA、MDMA、MDA、氯胺酮的固相萃取提取回收率分别为81.4%±2.51%、88.2%±2.48%、91.8%±2.03%、93.8%±1.46%、74.8%±2.27%,峰面积和质量浓度的线性关系良好(r〉0.999),线性范围分别为0.08~100μg/mL、0.4~100μg/mL、0.2~75μg/mL、0.3~75μg/mL、0.4~100μg/mL,检出限分别为30pg、200pg、80pg、100pg、200pg。结论本文所建方法适用于血中吗啡、苯丙胺类、氯胺酮常见毒品的筛选及定量分析。  相似文献   

11.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C(18) 5 microm, 2.1 mm x 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 degrees C in NaOH 1M before liquid-liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1-50 ng/mL in blood and urine; in the range 5-500 pg/mg for MA, MDMA, MDEA and MBDB, and 20-500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T+12h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D+8) and scalp hair at day 60 (D+60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

12.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C18 5 μm, 2.1 mm × 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A® (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 °C in NaOH 1 M before liquid–liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1–50 ng/mL in blood and urine; in the range 5–500 pg/mg for MA, MDMA, MDEA and MBDB, and 20–500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T + 12 h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D + 8) and scalp hair at day 60 (D + 60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

13.
The purpose of this study was to evaluate the ability of two amphetamine class screening reagents to exclude ephedrine (EPH), pseudoephedrine (PSEPH), and phenylpropanolamine (PPA) from falsely producing positive immunoassay screening results. The study also sought to characterize the prevalence and concentration distributions of EPH, PSEPH, and PPA in samples that produced positive amphetamine screening results. Approximately 27,400 randomly collected human urine samples from Navy and Marine Corps members were simultaneously screened for amphetamines using the DRI and Abuscreen online immunoassays at a cutoff concentration of 500 ng/mL. All samples that screened positive were confirmed for amphetamine (AMP), methamphetamine (MTH), 3,4-Methylenedioxyamphetamine (MDA), 3,4-Methylenedioxymethamphetamine (MDMA), EPH, PSEPH, and PPA by gas chromatography/mass spectrometry (GC/MS). The DRI AMP immunoassay identified 1,104 presumptive amphetamine positive samples, of which only 1.99% confirmed positive for the presence of AMP, MTH, MDA, or MDMA. In contrast, the online AMP reagent identified 317 presumptive amphetamine positives with a confirmation rate for AMP, MTH, MDA, or MDMA of 7.94%. The presence of EPH, PSEPH, or PPA was confirmed in 833 of the 1,104 samples that failed to confirm positive for AMP, MTH, MDA, or MDMA; all of the 833 samples contained PSEPH. When compared to the entire screened sample set, PSEPH was present in approximately 3%, EPH in 0.9%, and PPA in 0.8% of the samples. The results indicate that cross reactivities for EPH, PSEPH, and PPA are greater than reported by the manufacturer of these reagents. The distribution of concentrations indicates that very large concentrations of EPH, PSEPH, and PPA are common.  相似文献   

14.
A fast method was designed for the simultaneous determination of amphetamine (A), methamphetamine (MA), PMA, MDA, MDMA, MDEA and MBDB in urine. The drugs were analysed by LC (ESI)-MS/MS, after a simple liquid-liquid extraction in the presence of the deuterated analogues. Reverse phase separation on an Atlantis dC18 Intelligent Speed column was achieved in less than 4 min under gradient conditions, and the total run time was 8 min. The method was fully validated, including linearity (1-1000 ng/mL for A, MDMA, MDEA and MBDB; 2-1000 ng/mL for MDA and PMA; 1-200 ng/mL for MA; r2>0.99 for all compounds), recovery (>80%), within-day and between-day precision and accuracy (CV and MRE<12.7% for intermediate level and ULOQ, and <17.2% for LLOQ), limit of detection (0.2 ng/mL for MDMA, MDEA and MBDB; 0.5 ng/mL for A, MA and PMA; 1 ng/mL for MDA) and quantitation (1 ng/mL for A, MA, MDMA, MDEA and MBDB; 2 ng/mL for MDA and PMA) and relative ion intensities. No matrix effect was observed. The procedure proved to be sensitive, specific and rapid, and was applied to real forensic cases.  相似文献   

15.
A fast and simple method to detect some commonly abused illicit drugs, amphetamine, methamphetamine, 3,4-methylendioxy-amphetamine (MDA), 3,4-methylendioxy-methamphetamine (MDMA), 3,4-methylendioxy-N-ethylamphetamine (MDEA) and phencyclidine (PCP) in urine using solvent microextraction (SME) combined with gas chromatography (GC) analysis has been developed. The extraction is conducted by suspending a 2 μl drop of chloroform in a 2 ml urine sample. Following 8 min of extraction, the organic solvent is withdrawn into the syringe and injected into a GC with a pulsed discharge helium ionization detector (PDHID).The effects of different extraction solvents and times, pH and sample preparation were studied. The optimized method was capable of detecting drugs in urine at concentrations below Substance Abuse and Mental Health Services Administration (SAMHSA) established cut-off values for preliminary testing. Good linearity and reproducibility of extraction were obtained. The limits of detection were 0.5 μg/ml for amphetamine, 0.1 μg/ml for methamphetamine and MDA, 0.05 μg/ml for MDMA, 0.025 μg/ml for MDEA and 0.015 μg/ml for PCP. Relative standard deviation (R.S.D.) values ranged between 5 and 20% for the studied drugs.  相似文献   

16.
In a double-blind placebo controlled study on psychomotor skills important for car driving (Study 1), a 75 mg dose of +/- 3,4-methylenedioxymethamphetamine (MDMA) was administered orally to 12 healthy volunteers who were known to be recreational MDMA-users. Toxicokinetic data were gathered by analysis of blood, urine, oral fluid and sweat wipes collected during the first 5h after administration. Resultant plasma concentrations varied from 21 to 295 ng/ml, with an average peak concentration of 178 ng/ml observed between 2 and 4h after administration. MDA concentrations never exceeded 20 ng/ml. Corresponding MDMA concentrations in oral fluid, as measured with a specific LC-MS/MS method (which required only 50 microl of oral fluid), generally exceeded those in plasma and peaked at an average concentration of 1215 ng/ml. A substantial intra- and inter-subject variability was observed with this matrix, and values ranged from 50 to 6982 ng/ml MDMA. Somewhat surprisingly, even 4-5h after ingestion, the MDMA levels in sweat only averaged 25 ng/wipe. In addition to this controlled study, data were collected from 19 MDMA-users who participated in a driving simulator study (Study 2), comparing sober non-drug conditions with MDMA-only and multiple drug use conditions. In this particular study, urine samples were used for general drug screening and oral fluid was collected as an alternative to blood sampling. Analysis of oral fluid samples by LC-MS/MS revealed an average MDMA/MDEA concentration of 1121 ng/ml in the MDMA-only condition, with large inter-subject variability. This was also the case in the multiple drug condition, where generally, significantly higher concentrations of MDMA, MDEA and/or amphetamine were detected in the oral fluid samples. Urine screening revealed the presence of combinations such as MDMA, MDEA, amph, cannabis, cocaine, LSD and psilocine in the multiple-drug condition.  相似文献   

17.
尿中氯胺酮及其代谢物盘鉴和GC/MS/SIM测定   总被引:10,自引:0,他引:10  
目的 研究尿中氯胺酮(KET)及其代谢物去甲基氯胺酮(NKET)的盘鉴(Disk SPE)。方法 用含有化学键合C18和强酸型强阳离子交换(SCX)基团的萃取柱SPEC.C18 AR/MP3萃取,加入萃取柱前的尿样用0.1mol/L磷酸盐缓冲溶液(pH 6)稀释,洗脱溶剂为含2%(v/v)氨水的乙酸乙酯;以2,4,6-三硝基甲苯(TNT)为色谱内标,GC/MS/SIM检测。结果 在加标量为0.5μg/mL、2μg/mL和6μg/mL的控制尿样中,KET和NKET的平均回收率分别为91.5%和79.9%,6次测定的RSD均为8.7%;线性范围0.02-8μg/mL,线性相关系数分别为0.9819和0.9964;检出限(S/N=3)分别为6ng/mL和4ng/mL;总离子色谱图背景低,杂质少。同一根萃取柱重复使用8次以上未见性能下降;嫌疑尿样中检出KET和/或NKET,和常规的液液萃取结果相符。结论 该方法适用于尿中KET和NKET的同时测定。  相似文献   

18.
Until 1997, only one amphetamine related derivatives (AMPs) fatality had been reported in Greece. Since then, amphetamine (AMP) or AMPs have been found in seven out of 1,500 post-mortem toxicological cases. The cause and manner of death of these seven cases were: 3,4-methylenedioxy-N-methamphetamine (MDMA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA) poisoning (n = 1), drowning in water (n = 4), cranial injuries caused by a traffic accident (n = 1) and heart failure (n = 1). In the case where the use of AMP or AMPs was considered, the immediate cause of death post-mortem toxicological analysis revealed 2 microg/ml MDMA and 0.7 microg/ml MDEA in blood. MDMA was identified in two cases of drowning (2 microg/ml in blood in the first case and 1.7 microg/g in liver in the second case) and in the traffic accident case (0.4 microg/g in liver). Methamphetamine was detected in two cases of drowning (2.5 microg/ml in blood in the first case and 6 microg/g in liver in the second case). AMP was found in the heart failure case (0.2 microg/g in liver). Alcohol was present, together with AMP or AMPs, in four cases. These findings indicate an increase in the illegal abuse of AMPs in Greece. Because of this, we now routinely screen for AMPs.  相似文献   

19.
尿中MDMA及其代谢物的GC和GC/MS分析   总被引:3,自引:0,他引:3  
Shen M  Yan W  Shen B  Xiang P  Huang Z  Liu W  Bo J 《法医学杂志》1998,14(1):10-11,24
考察MDMA在人体内的代谢以及建立尿中MDMA和体内主要代谢物MDA的分析方法。尿样水解后经液-液提取处理,用GC/MS(EI、PCI)和GC/FID法分析。人摄入MDMA后尿中MDA和原体MDMA比约为0.10~0.14。GC/MS/SIM和GC/FID法的最低检出限为2ng/ml和50ng/ml,回收率大于85%,变异系数小于10%。该法简便快速、灵敏度高、结果可靠,可用于MDMA滥用者的尿样鉴定。MDA/MDMA浓度比可作为评判毒分结果的参考指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号