首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In the last few years genetic identification and paternity testing have begun to make increasing use of autosomal SNP (Single Nucleotide Polymorphism) typing as a supplement or alternative to STR analysis. With the improvement in detection technology SNP analysis is likely to be easier and more sensitive, with the generation of new methods and multiplex systems for a growing array of SNP markers. SNPforID consortium developed 52 SNP PCR multiplex for human identification purposes detected with 23 plex and 29 plex single base extension reactions (Auto1 and 2 respectively). In this study, internal validation for the 29 SNPs of Auto2 was carried out by performing a 29 plex PCR and single base extension reaction on control samples and previously analyzed forensic casework and subsequent detection with an AB 310 Genetic Analyzer. We tested the accuracy, precision, sensitivity and reproducibility of the Auto2 multiplex with this instrument in our laboratory. We used 9947A control DNA samples of the AmpF?STR Identifiler™ kit to test the validation parameters together with non-probative DNA samples from whole blood and buccal swab samples of 29 healthy donors from different parts of Istanbul. Good results were obtained but interpretation of the peak patterns obtained on the AB 310 requires care and thorough optimization before they can be readily compard to those obtained from multiple capillary AB 31xx Analyzers. We succesfully optimized and validated the SNPforID Auto2 multiplex system for identification analyses in our laboratory.  相似文献   

2.
目的建立47-plexSNPs复合检测方法,评价其在法医学中的应用价值。方法筛选46个常染色体SNPs和1个Y—SNPs,使用2个检测体系分别对47个SNPs进行单管内复合PCR扩增,采用荧光标记单碱基延伸法和毛细管电泳检测技术进行分型检测;并用建立的方法对260份广东地区无关个体血样进行47个SNPs分型。结果建立的47-plex SNPs的复合检测体系灵敏度高,种属特异性好;260名个体所有SNPs均能准确分型,群体内基因型频率分布均符合Hardy—Weinberg平衡,累积个人识别率大于0.9999,累积非父排除率为0.99982,累积偶合率为6.24×10一。结论本文47-plex SNPs复合检测方法能同时对47个SNPs进行快速、准确的检测,在法医学个体识别鉴定中具有良好的应用前景。  相似文献   

3.
4.
常染色体21个SNPs多态性分型方法研究   总被引:2,自引:2,他引:0  
目的建立常染色体21个SNPs的多态性分型方法。方法采用荧光标记公用引物和等位基因特异性引物原理设计SNP复合扩增引物体系,对45个备选SNP位点筛选,选出21个及性别Amelogenin构成复合扩增体系。PCR产物经3130XL型电泳仪电泳分离,GeneMaperTM3.0数据分析软件分析结果。同时随机选取6份样品,使用测序方法对SNP分型并进行测序验证。结果应用本研究建立的复合扩增体系扩增样品,产物经毛细管电泳后,每个SNPs均可正确判定基因型。随机选取6份样品SNPs位点测序结果显示,荧光标记SNPs复合扩增分型与直接测序结果完全一致。结论本研究建立的荧光标记公有引物特异性片段常染色体21个SNPs复合扩增方法是SNP多态性分析的一种有效方法,并有助于解决SNP分型识别能力、效率、通量和高成本的问题。  相似文献   

5.
DNA markers used for individual identification in forensic sciences are based on repeat sequences in nuclear DNA and the mitochondrial DNA hypervariable regions 1 and 2. An alternative to these markers is the use of single nucleotide polymorphisms (SNPs). These have a particular advantage in the analysis of degraded or poor samples, which are often all that is available in forensics or anthropology. In order to study the potential of SNP analysis in these fields, 41 SNPs were selected on the basis of following criteria: conservation, lack of phenotypic expression, and frequency of occurrence in populations. Thirty-six autosomal SNPs were used for genotyping 21 inclusionary and 3 exclusionary paternity cases. The behavior of 5 X-chromosome SNPs was analyzed in a French representative population. Our approach to SNP typing is a multiplex PCR based amplification followed by simultaneous detection by primer extension (PEX) analyzed by Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). The selected autosomal SNPs showed independent inheritance and gave clear results in paternity investigation. All X-SNPs were useful as both paternity and identification markers. PEX and MALDI-TOF MS, with their high sensitivity, precision and speed, gave a powerful method for forensic and anthropological exploitation of biallelic markers.  相似文献   

6.
A novel 39-plex typing system for single nucleotide polymorphisms (SNPs) has been developed. This multiplex approach has the advantage of being able to type 38 autosomal SNPs and one sex-discriminating base exchange site on the X and Y chromosomes rapidly and simultaneously. The SNP loci on the autosomes, which we examined, contain 15 loci distributed on blood type genes: three on RhCE, two each on Km and Gc, and one each on Duffy, AcP1, Tf, MN, GPT, EsD, PI, and Kidd genes. Thirty-seven genomic DNA fragments containing a total of 38 SNPs and one sex-discriminating site were amplified in one multiplex PCR reaction. Following the reaction, single nucleotide primer extension reaction was performed by dividing these SNP loci into five groups. The SNP type of each of the 39 loci was determined at one time by capillary electrophoresis using the newly designed multi-injection method. The combined PD (power of discrimination) of this typing system was (1-1.1) x 10(-14), and the MEC (mean exclusion chance) was 0.9990. We applied this system to forensic cases, including 16 paternity testing cases (13 non-exclusion and three exclusion cases) and one personal identification case. For the paternity testing cases, the highest Essen-M?ller's W-value was 0.9999995. The pM (matching probability) of the personal identification case was 2.22 x 10(-17). These data showed that this system was an excellent tool for use in forensic cases of paternity testing and personal identification.  相似文献   

7.
Microhaplotypes have become a new promising forensic genetic marker in recent years. The microhaplotype composed of two SNPs, SNP-SNP, indicates strong application potential because of the shortest fragment and good polymorphism and without the interference of stutter and high mutation rate as short tandem repeats (STR) and low polymorphism as a single SNP. Currently, the most common method to detect microhaplotypes is massively parallel sequencing (MPS), however its high cost and the need for special instruments limit its use in general forensic laboratories. In this study, we screened out 8 new SNP-SNP loci and established a new detection method by associating multiplex ARMS-PCR and SNaPshot technology. Firstly, we introduced ARMS-based PCR for SNP1. Then, SBE primers for SNaPshot assay were designed as 20–25 bp upstream complementary sequence next to the position of SNP2. Finally, 8 loci were built into one panel based on different SBE primer lengths and fluorescence colors. In brief, by combing ARMS-PCR and SNaPshot technology, it is easy and fast to profile the SNP1 and SNP2 orderly of the SNP-SNP microhaplotype based on CE platform. Our results suggested that the 8 loci have relatively high polymorphism as well as robust performance.  相似文献   

8.
The AmpliType HLA DQ alpha forensic DNA amplification and typing kit is designed for the qualitative analysis of the human leukocyte antigen (HLA) DQ alpha alleles present in deoxyribonucleic acid (DNA) extracted from forensic samples. The AmpliType kit is the first forensic DNA typing product based on the GeneAmp polymerase chain reaction (PCR) process. The kit was evaluated by five forensic science laboratories (test sites) to assess their ability to perform DNA typing using PCR on sample types typically encountered by forensic laboratories. None of the DNA-containing samples was mistyped. Of the 180 DNA-containing samples analyzed, results were reported for 178 (98.9%). Of the 178 samples with results, all were correctly typed. Two sites did not report a result for one sample each. Four of the five laboratories experienced no significant levels of contamination in the DNA-containing samples. At the one site with the highest number of DNA-containing samples with contamination, the typing results were not compromised. This site was able to correct the contamination problem through simple procedural changes and stricter attention to sterile technique. Blank controls were important to monitor contamination. In conclusion, the trial demonstrated that forensic science laboratories are capable of setting up a PCR-based DNA typing laboratory and successfully using the AmpliType HLA DQ alpha forensic DNA amplification and typing kit to analyze forensic samples.  相似文献   

9.
The X-chromosome has valuable characteristics for population genetic studies. In order to investigate the genetics of the human Mediterranean populations further, we developed a 25 X-chromosome SNP-multiplex typing system. The system was based on PCR multiplex amplification and subsequent multiplex single base extension with the SNaPshot reaction, capillary electrophoresis and multicolor fluorescence detection.We investigated 11 Mediterranean populations with the 25 X-chromosome SNPs. A high overall homogeneity was found among the Mediterranean populations except for Moroccans, who differed genetically from the rest of the populations in the Mediterranean area. This result supports the hypothesis of a low incidence of the south-north genetic interchange at the western shores of the Mediterranean basin. A low genetic distance was found between populations in the Middle East and the western part of the Mediterranean area most likely reflecting the strong effect of the Neolithic wave.A certain level of background linkage disequilibrium among the 25 SNPs on the X-chromosome in Ibiza and Cosenza was observed, possibly as a consequence of their demographic history.  相似文献   

10.
We have developed a robust single nucleotide polymorphism (SNPs) typing assay with co-amplification of 25 DNA-fragments and the detection of 35 human Y chromosome SNPs. The sizes of the PCR products ranged from 79 to 186 base pairs. PCR primers were designed to have a theoretical Tm of 60 +/- 5 degrees C at a salt concentration of 180 mM. The sizes of the primers ranged from 19 to 34 nucleotides. The concentration of amplification primers was adjusted to obtain balanced amounts of PCR products in 8mM MgCl2. For routine purposes, 1 ng of genomic DNA was amplified and the lower limit was approximately 100 pg DNA. The minisequencing reactions were performed simultaneously for all 35 SNPs with fluorescently labelled dideoxynucleotides. The size of the minisequencing primers ranged from 19 to 106 nucleotides. The minisequencing reactions were analysed by capillary electrophoresis and multicolour fluorescence detection. Female DNA did not influence the results of Y chromosome SNP typing when added in concentrations more than 300 times the concentrations of male DNA. The frequencies of the 35 SNPs were determined in 194 male Danes. The gene diversity of the SNPs ranged from 0.01 to 0.5.  相似文献   

11.
SNPs in forensic genetics: a review on SNP typing methodologies   总被引:17,自引:0,他引:17  
There is an increasing interest in single nucleotide polymorphism (SNP) typing in the forensic field, not only for the usefulness of SNPs for defining Y chromosome or mtDNA haplogroups or for analyzing the geographical origin of samples, but also for the potential applications of autosomal SNPs. The interest of forensic researchers in autosomal SNPs has been attracted due to the potential advantages in paternity testing because of the low mutation rates and specially in the analysis of degraded samples by use of short amplicons. New SNP genotyping methods, chemistries and platforms are continuously being developed and it is often difficult to be keeping up to date and to decide on the best technology options available. This review offers to the reader a state of the art of SNP genotyping technologies with the advantages and disadvantages of the different chemistries and platforms for different forensic requirements.  相似文献   

12.
To develop a cost‐effective technique for single‐nucleotide polymorphism (SNP) genotyping and improve the efficiency to analyze degraded DNA, we have established a novel multiplex system including 21‐locus autosomal SNPs and amelogenin locus, which was based on allele‐specific amplification (ASA) and universal reporter primers (URP). The target amplicons for each of the 21 SNPs arranged from 63 base pair (bp) to 192 bp. The system was tested in 539 samples from three ethnic groups (Han, Mongolian, and Zhuang population) in China, and the total power of discrimination (TPD) and cumulative probability of exclusion (CPE) were more than 0.99999999 and 0.98, respectively. The system was further validated with forensic samples and full profiles could be achieved from degraded DNA and 63 case‐type samples. In summary, the multiplex system offers an effective technique for individual identification of forensic samples and is much more efficient in the analysis of degraded DNA compared with standard STR typing.  相似文献   

13.
Phenotypic and genotypic characteristics of the cat can be obtained from single nucleotide polymorphisms (SNPs) analyses of fur. This study developed miniplexes using SNPs with high discriminating power for random‐bred domestic cats, focusing on individual and phenotypic identification. Seventy‐eight SNPs were investigated using a multiplex PCR followed by a fluorescently labeled single base extension (SBE) technique (SNaPshot®). The SNP miniplexes were evaluated for reliability, reproducibility, sensitivity, species specificity, detection limitations, and assignment accuracy. Six SNPplexes were developed containing 39 intergenic SNPs and 26 phenotypic SNPs, including a sex identification marker, ZFXY. The combined random match probability (cRMP) was 6.58 × 10?19 across all Western cat populations and the likelihood ratio was 1.52 × 1018. These SNPplexes can distinguish individual cats and their phenotypic traits, which could provide insight into crime reconstructions. A SNP database of 237 cats from 13 worldwide populations is now available for forensic applications.  相似文献   

14.
Here we present the results of the 2009 Paternity Testing Workshop of the English Speaking Working Group of the International Society for Forensic Genetics. The exercise included paternity testing of blood samples from a mother, a child and two alleged fathers. The laboratories were encouraged to answer questions concerning their laboratory routines and a paper challenge was distributed in order to compare statistical calculations. A total of 62 laboratories participated. The laboratories used a total of 49 autosomal STRs and PCR-investigated VNTRs, 19 Y-chromosomal STRs, 8 X-chromosomal STRs, 7 VNTR systems investigated with RFLP, 49 autosomal SNPs and 11 mtDNA SNPs. The rate of typing and reporting errors was 0.1%.  相似文献   

15.
Single-nucleotide polymorphisms of Y chromosome (Y-SNPs) are a class of markers of interest in forensic investigations, because many of them show regional specificity, providing useful information about the geographic origin of a subject or evidence under investigation. A first multiplex with 7 SNPs (M35, M89, M9, M170, M172, M45, M173), which occur in the basal branches of the phylogenetic tree and are able to assign a subject to known most frequent European haplogroups, was designed. SNP genotyping was accomplished by hot-start PCR with primers amplifying fragments between 96 and 136 nucleotides, minisequencing, and capillary electrophoresis of extension products. Ninety seven subjects of known geographic provenance were studied, of which 68 from Europe. Of these, 57 had mutations found more frequently in European haplogroups and 11 more frequent in Asian populations. Subjects from non-European countries were also examined and had haplogroups common in their regions of provenance. Experiments with low molecular weight DNA gave positive amplification from 1 ng of DNA for all seven SNPs.  相似文献   

16.
Analysis of control mitochondrial DNA (mtDNA) hypervariable regions is sometimes the only available method to study hair evidence in forensic casework although being a laborious technique. Nowadays there is a huge interest in new genetic markers such as single nucleotide polymorphisms (SNPs) to type degraded forensic samples. For that purpose, a 10-Plex mitochondrial SNP for haplogroup typing, chosen from several SNP studies and useful to study the most common populations in our laboratory was applied in forensic casework. Hair shafts from three forensic cases with different ethnic backgrounds were studied with mtDNA sequencing and compared with mitochondrial SNPs (mtSNPs) study. Coding mtSNP typing prior to sequencing can allow for a rapid screening in forensic casework, which is emphasized in the first two cases. Moreover, in cases in which mtDNA sequencing fails, mtSNPs can still be detected. This 10 SNP loci multiplex provides a less expensive and simpler method for mitochondrial typing compared to control region mtDNA sequencing, especially when used as a fast screening method.  相似文献   

17.
18.
The present communication presents a new triplex PCR co-amplifying three loci (D3S1358, D8S1179 and D18S51) recommended for STR typing by the European Network of Forensic Science Institutes (ENFSI). Twenty-two different primers were tested to optimise the PCR. Four of the six primer sequences finally chosen were self selected, the fifth was a published one and the sixth derived from a commercially available multiplex kit. Using this PCR-setup, even minimum amounts of genomic DNA are sufficient to analyse the STR loci D3S1358, D8S1179 and D18S51 in parallel. Especially in forensic casework, where DNA is mostly limited and often contaminated with enzyme inhibitors, this new PCR proved to be very advantageous. To demonstrate the reliability, buccal swabs from 2874 persons were typed not only with the new triplex PCR but also with a commercially available multiplex kit.  相似文献   

19.
We constructed a multiplex PCR system for 3 miniSTR loci D20S482, D3S3053, D6S474. This typing system showed high stability and sensitivity (0.05 ng). Population data investigated in 120 healthy unrelated Chinese Han individuals showed higher genetic polymorphism, with the combined power of discrimination and power of exclusion being 0.998 and 0.84. The amplification product length ranged from 88 bp to 127 bp for all three loci. The successful rate of typing highly degraded samples using this miniSTR multiplex PCR system was significantly higher than using identifiler kit, indicating the multiplex set represents a useful tool in Chinese forensic practice, especially for the highly degraded DNA sample.  相似文献   

20.
A single nucleotide polymorphism (SNP) multiplex has been developed to analyse highly degraded and low copy number (LCN) DNA template, i.e. <100 pg, for scenarios including mass disaster identification. The multiplex consists of 20 autosomal non-coding loci plus Amelogenin for sex determination, amplified in a single tube PCR reaction and visualised on the Applied Biosystems 3100 capillary electrophoresis (CE) system. Allele-specific primers tailed with shared universal tag sequences were designed to speed multiplex design and balance the amplification efficiencies of all loci through the use of a single reverse and two differentially labelled allele denoting forward universal primers. As the multiplex is intended for use with samples too degraded for conventional profiling, a computer program was specifically developed to aid interpretation. Critical factors taken into account by the software include empirically determined extremes of heterozygous imbalance (Hb) and the drop-out threshold (Ht) defined as the maximum peak height of a surviving heterozygous allele, where its partner may have dropped out. The discrimination power of the system is estimated at 1 in 4.5 million, using a White Caucasian population database. Comparisons using artificially degraded samples profiled with both the SNP multiplex and AMPFISTR SGM plus (Applied Biosystems) demonstrated a greater likelihood of obtaining a profile using SNPs for certain sample types. Saliva stains degraded for 147 days generated an 81% complete SNP profile whilst short tandem repeats (STRs) were only 18% complete; similarly blood degraded for 243 days produced full SNP profiles but only 9% with STRs. Reproducibility studies showed concordance between SNP profiles for different sample types, such as blood, saliva, semen and hairs, for the same individual, both within and between different DNA extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号