首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and reliable method for extraction and quantification of benzoylecgonine (BZE) and cocaine (COC) in urine is presented. Propyl‐chloroformate was used as derivatizing agent, and it was directly added to the urine sample: the propyl derivative and COC were then recovered by liquid–liquid extraction procedure. Gas chromatography–mass spectrometry was used to detect the analytes in selected ion monitoring mode. The method proved to be precise for BZE and COC both in term of intraday and interday analysis, with a coefficient of variation (CV) <6%. Limits of detection (LOD) were 2.7 ng/mL for BZE and 1.4 ng/mL for COC. The calibration curve showed a linear relationship for BZE and COC (r2 >0.999 and >0.997, respectively) within the range investigated. The method, applied to thirty authentic samples, showed to be very simple, fast, and reliable, so it can be easily applied in routine analysis for the quantification of BZE and COC in urine samples.  相似文献   

2.
液相色谱-质谱联用测定血中氟乙酸类鼠药   总被引:2,自引:1,他引:1  
目的建立血中氟乙酸类鼠药液相色谱-电喷雾离子阱质谱分析方法。方法血样经甲醇沉淀蛋白后离心,上清液用氮气吹干,流动相定容过滤膜,滤液直接进行液相色谱-电喷雾离子阱质谱联用分析。结果血中氟乙酸根在0.050μg/mL-2.0μg/mL之间具有良好的线性关系,最低检出限为0.020μg/mL。结论本文建立的方法快速、灵敏、操作简便,适用于刑事案件中该类氟乙酸类鼠药的快速检验,具有一定的实用价值。  相似文献   

3.
HS-SPME-GC/MS法检测尿液及毛发中苯丙胺类毒品   总被引:1,自引:1,他引:0  
目的采用顶空固相微萃取(HS-SPME)、GC/MS分析方法,对生物样品中苯丙胺(AM)、甲基苯丙胺(MAM)、3,4-亚甲二氧基苯丙胺(MDA)和3,4-亚甲二氧基甲基苯丙胺(MDMA)4种苯丙胺类毒品进行定性定量分析。方法在碱性和饱和盐处理状态下,采用100μm聚二甲基硅氧烷(PDMS)萃取纤维,于顶空瓶中进行生物样品AM、MAM、MDA、MDMA 4种毒品萃取,以2-甲基苯乙胺为内标,经气-质联用选择离子检测(GC/MS/SIM)模式进行定性定量分析。对HS-SPME条件优化,对方法的精密度、准确度和检出限进行测定。结果 AM、MAM、MDA、MDMA 4种毒品尿液中的最低检出限为5ng/mL,毛发中的最低检出限为0.5ng/mg。尿液中线性关系范围为0.05μg/mL~5μg/mL,r〉0.991,回收率为82%~108%,RSD为2.6%~6.1%(n=5);毛发中线性关系范围为5ng/mg~500ng/mg,r〉0.992,回收率为80%~113%,RSD(%)为1.4%~6.8%(n=5)。结论 HS-SPME-GC/MS各项定量参数符合分析要求。该方法简单、灵活、经济、快速、无溶剂,适用于生物检材中该类毒品的分析。  相似文献   

4.
Calibration models for the quantitation of commonly used ecstasy substances have been developed using near infrared spectroscopy (NIR) in diffuse reflectance and in transmission mode by applying seized ecstasy tablets for model building and validation. The samples contained amphetamine, N-methyl-3,4-methylenedioxy-amphetamine (MDMA) and N-ethyl-3,4-methylenedioxy-amphetamine (MDE) in different concentrations. All tablets were analyzed using high performance liquid chromatography (HPLC) with diode array detection as reference method. We evaluated the performance of each NIR measurement method with regard to its ability to predict the content of each tablet with a low root mean square error of prediction (RMSEP). Best calibration models could be generated by using NIR measurement in transmittance mode with wavelength selection and 1/x-transformation of the raw data. The models build in reflectance mode showed higher RMSEPs using as data pretreatment, wavelength selection, 1/x-transformation and a second order Savitzky-Golay derivative with five point smoothing was applied to obtain the best models. To estimate the influence of inhomogeneities in the illegal tablets, a calibration of the destroyed, i.e. triturated samples was build and compared to the corresponding data of the whole tablets. The calibrations using these homogenized tablets showed lower RMSEPs. We can conclude that NIR analysis of ecstasy tablets in transmission mode is more suitable than measurement in diffuse reflectance to obtain quantification models for their active ingredients with regard to low errors of prediction. Inhomogeneities in the samples are equalized when measuring the tablets as powdered samples.  相似文献   

5.
目的建立血中氟乙酸类杀鼠剂衍生化-液相色谱-电喷雾离子阱质谱分析方法。方法血样经乙腈沉淀蛋白后离心,上清液中加入衍生化试剂α-溴苯乙酮和催化剂四丁基溴化铵,在60℃水浴中加热90min,衍生化产物直接进行液相色谱-电喷雾离子阱质谱联用分析。结果血中氟乙酸根浓度在0.15μg/mL~15.40μg/mL之间具有良好的线性关系,最低检出限为0.020μg/mL。结论本文建立的方法操作简便、灵敏、快速,适用于刑事案件中氟乙酸类杀鼠剂的快速检验。  相似文献   

6.
目的建立测定水样中的敌草快的分析方法。方法采用紫外分光光度法和二阶导数光谱法测定水样中的敌草快。结果紫外分光光度法直接测定水样中的敌草快,在0.1~50μg/mL范围内线性关系良好,日内,日间精密度均小于2.6%。二阶导数光谱法在0.1~10μg/mL线性关系良好,日内、日间精密度均小于1.29%。结论该两种方法快速、简单、灵敏,适用于环境监测工作。  相似文献   

7.
目的采用固相萃取-气相色谱/质谱分析方法检测血液、尿液和脏器组织中的百草枯。方法人血液、尿液和猪肺组织样品经三氯乙酸去除蛋白后,取上清用十二烷基三甲基溴化铵和十二烷基硫酸钠处理过的C18小柱提取,提取物用硼氢化钠在碱性条件下还原,产物用气相色谱/质谱法分析,外标法定量。结果生物检材中百草枯回收率为78%~87%,最低检出限为0.1μg/mL,在0.5~1mg/mL范围内线性关系良好,可对实际案例检材进行定量检测。结论本文固相萃取-气相色谱/质谱分析方法能满足中毒生物检材检验及临床毒物检验需要。  相似文献   

8.
There is an increasing demand for herbal medicines in weight loss treatment. Some synthetic chemicals, such as sibutramine (SB), have been detected as adulterants in herbal formulations. In this study, two strategies using near infrared (NIR) spectroscopy have been developed to evaluate potential adulteration of herbal medicines with SB: a qualitative screening approach and a quantitative methodology based on multivariate calibration. Samples were composed by products commercialized as herbal medicines, as well as by laboratory adulterated samples. Spectra were obtained in the range of 14,000–4000 per cm. Using PLS‐DA, a correct classification of 100% was achieved for the external validation set. In the quantitative approach, the root mean squares error of prediction (RMSEP), for both PLS and MLR models, was 0.2%w/w. The results prove the potential of NIR spectroscopy and multivariate calibration in quantifying sibutramine in adulterated herbal medicines samples.  相似文献   

9.
Anticholinesterase pesticides are widely used, and as a result they are involved in numerous acute and even fatal poisonings. The aim of this study was the development, optimization, and validation of a simple, rapid, specific, and sensitive gas chromatography-mass spectrometry method for the determination of 11 anticholinesterase pesticides (aldicarb, azinphos methyl, carbofuran, chlorpyrifos, dialifos, diazinon, malathion, methamidophos, methidathion, methomyl, and terbufos) in blood. Only 500 μL of blood was used, and the recoveries after liquid-liquid extraction (toluene/chloroform, 4:1, v/v) were more than 65.6%. The calibration curves were linear (R(2) ≥ 0.996). Limit of detections and limit of quantifications were found to be between 1.00-10.0 and 3.00-30.0 μg/L, respectively. Accuracy expressed as the %E(r) was found to be between -11.0 and 7.8%. Precision expressed as the percent relative standard deviation was found to be <9.4%. The developed method can be applied for the investigation of both forensic and clinical cases of accidental or suicidal poisoning with these pesticides.  相似文献   

10.
Identification particles used for the purpose of the post-blast identification of explosives have a coding system based on the combination of metal oxides and their various concentrations. These materials are composed of the polymeric matrix, iron powder (ferromagnetic properties), UV light active dyestuff and various metal oxides in a various ratios. A suitable analytical method has to be used for an accurate characterization of these metal components in the particles in order to find the required information, i.e. to determine the place and the year of production and as the case may be, also the production batch of misused explosives. In this work, the method of microwave digestion and flame atomic absorption spectrometry (F-AAS) was developed for an accurate determination of Zn, Mg, Cu and Pb in a few novel types of identification particles and applied to their characterization. When using specific sample treatment (digestion with a mixture of nitric acid with hydrochloric or hydrofluoric acid), the 3 sigma limits of detection (LODs) for the determination of Zn, Mg, Cu and Pb in 5mg original samples were 1.9, 0.2, 1.3 and 2.4 mg g(-1), respectively. The signal suppression due to the presence of HNO3+HCl or HNO3+HF was observed for Zn; therefore, the calibration solutions had to be prepared exactly with the same acids as those used for the sample mineralization. The determination of Mg, Cu and Pb was free of interferences; hence a simple calibration curve method could be adopted for attaining accurate results. The accuracy was checked by comparison of the results with those obtained by means of independent inductively coupled plasma optical emission spectrometry (ICP-OES). Good precision values, as relative standard deviation, in the range of 1-5% were obtained. A total number of 71 samples was analysed and classified by multivariate methods to prove the suitability of the procedure proposed for the purpose of the identification of explosives.  相似文献   

11.
A simple and miniaturized sample preparation method for determination of amphetamines in urine was developed using on-column derivatization and gas chromatography-mass spectrometry (GC-MS). Urine was directly applied to the extraction column that was pre-packed with Extrelut and sodium carbonate. Amphetamine (AP) and methamphetamine (MA) in urine were adsorbed on the surface of Extrelut. AP and MA were then converted to a free base and derivatized to N-propoxycarbonyl derivatives using propylchloroformate on the column. Pentadeuterated MA was used as an internal standard. The recoveries of AP and MA from urine were 100 and 102%, respectively. The calibration curves showed linearity in the range of 0.50-50 microg/mL for AP and MA in urine. When urine samples containing two different concentrations (0.50 and 5.0 microg/mL) of AP and MA were determined, the intra-day and inter-day coefficients of variation were 1.4-7.7%. This method was applied to 14 medico-legal cases of MA intoxication. The results were compared and a good agreement was obtained with a HPLC method.  相似文献   

12.
A method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) to simultaneously quantify amphetamines, opiates, ketamine, cocaine, and metabolites in human hair is described. Hair samples (50 mg) were extracted with methanol utilizing cryogenic grinding. Calibration curves for all the analytes were established in the concentration range 0.05–10 ng/mg. The recoveries were above 72%, except for AMP at the limit of quantification (LOQ), which was 48%. The accuracies were within ±20% at the LOQ (0.05 ng/mg) and between −11% and 13.3% at 0.3 and 9.5 ng/mg, respectively. The intraday and interday precisions were within 19.6% and 19.8%, respectively. A proficiency test was applied to the validated method with z-scores within ±2, demonstrating the accuracy of the method for the determination of drugs of abuse in the hair of individuals suspected of abusing drugs. The hair concentration ranges, means, and medians are summarized for abused drugs in 158 authentic cases.  相似文献   

13.
A simple determination method of amphetamine (AP) and methamphetamine (MA) in human blood was developed using on-column derivatization and gas chromatography-mass spectrometry (GC-MS). AP and MA were adsorbed on the surface of Extrelut and then derivatized the N-propoxycarbonyl derivatives using propylchloroformate. Pentadeuterated MA was used as an internal standards. The recoveries of AP and MA from the spiked blood were 89.7 and 90.3%, respectively. The calibration curves showed linearity in the range of 12.5-2000 ng/g for AP and MA in blood. The coefficients of variation of intraday and interday were 0.42-4.58%. Furthermore, this proposed method was applied to some medico-legal cases of MA intoxication. MA and its metabolite AP were detected in the blood samples, and the correlation of the blood level of amphetamines and the behaviors of the victims was in good agreement with the criteria proposed by Nagata [Jpn. J. Legal Med. 37 (1983) 513].  相似文献   

14.
A new and sensitive method to determine ticlopidine in whole human blood using proadifen as the internal standard (IS) is described. The analyte and IS were extracted by solid-phase extraction using Oasis HLB cartridges, and the extracts were analyzed by gas chromatography-electron impact ionisation-mass spectrometry (GC/EI-MS). Calibration curves were established daily in spiked blood samples using a non-linear calibration model, between 0.01 and 4.5 microg/mL. The correlation coefficients were higher than 0.995. Precision and accuracy fulfilled the internationally accepted criteria (coefficients of variation were less than 9%, and the measured concentrations were within +/-7% of the true value). Limits of detection and quantitation were respectively, 3 and 10 ng/mL. No interfering substances were detected by analysis of 10 blank blood samples of different origin. Mean recovery, calculated at three concentration levels, was 71%. Because of its simplicity and speed, the proposed method can be applied in the determination of this inhibitor of platelet aggregation in whole blood samples, and is suitable for application in toxicology routine analysis.  相似文献   

15.
目的建立人全血中25种精神药物快速测定的LC-MS/MS方法,并应用于分析杭州地区药物影响下驾驶(driving under the inference of drugs,DUID)情况。方法以乙腈沉淀蛋白,离心后取上清液,氮气流下吹干,残渣以初始流动相复溶,离心后取上清分析;采用C18色谱柱(50mm×3.0mm,2.6μm)分离,流动相:0.1%甲酸水(A相),乙腈:甲醇=1:1(B相),梯度洗脱;质谱检测,采用串联质谱电喷雾离子源,正电离扫描,多反应监测(MRM)。结果 25种精神药物在0.05~20ng/m L范围内线性良好,R=0.994 4~0.999 6;定量下限为0.05ng/m L;提取回收率为83.0%~99.7%;方法回收率为80.2%~97.4%;日内精密度(RSD)为1.6%~14%;日间精密度(RSD)为3.1%~14%。以该法测定杭州市公安司法鉴定中心留存的全血样品3140例,25种精神药物至少一种的检出率为3.7%。结论本方法灵敏、快捷、准确,适用于全血中25种精神药物快速检测。  相似文献   

16.
A Raman spectroscopy method for determining the drug content of street samples of amphetamine was developed by dissolving samples in an acidic solution containing an internal standard (sodium dihydrogen phosphate). The Raman spectra of the samples were measured with a CDD-Raman spectrometer. Two Raman quantification methods were used: (1) relative peak heights of characteristic signals of the amphetamine and the internal standard; and (2) multivariate calibration by partial least squares (PLS) based on second derivative of the spectra. For the determination of the peak height ratio, the spectra were baseline corrected and the peak height ratio (h(amphetamine at 994 cm(-1) )/h(internal standard at 880 cm(-1) )) was calculated. For the PLS analysis, the wave number interval of 1300-630 cm(-1) (348 data points) was chosen. No manual baseline correction was performed, but the spectra were differentiated twice to obtain their second derivatives, which were further analyzed. The Raman results were well in line with validated reference LC results when the Raman samples were analyzed within 2 h after dissolution. The present results clearly show that Raman spectroscopy is a good tool for rapid (acquisition time 1 min) and accurate quantitative analysis of street samples that contain illicit drugs and unknown adulterants and impurities.  相似文献   

17.
目的建立分子印迹固相萃取(MISPE)、GC/MS分析方法,用于血液中苯丙胺类毒品检测。方法 10mmol/L醋酸铵缓冲液(pH8.0)4倍稀释空白添加血液,1mL甲醇,1mL10mmol/L醋酸铵缓冲液(pH8.0)活化苯丙胺类分子印迹固相萃取柱;2×1mL去离子水、1mL60%的乙腈去离子水、1mL1%醋酸乙腈洗涤杂质;2×1mL1%甲酸/甲醇洗脱,洗脱液挥干定容,经GC/NPD、GC/MS分析检测。结果各种苯丙胺类毒品回收率均在90%以上,在20~5 000ng/mL浓度范围内线性关系良好,r2为0.995 7~0.998 9,LOQ在16~30ng/mL之间,LOD在8~15ng/mL之间。结论本方法回收率高,净化效果显著,稳定性好,杂质干扰少,可用于血液中低浓度苯丙胺类毒品的分析检测。  相似文献   

18.
In this study, δ13C values of six cocaine samples were identified and classified using a single quadrupole mass spectrometer and an isotope ratio mass spectrometry (IRMS) as simultaneous gas chromatography detectors. Our instrument modification is simple to use and is useful (i) when the sample is of limited size or can only be injected once, (ii) to help identify peaks in a complicated IRMS chromatogram, and (iii) to help differentiate very simple systems when impurity profiling is not possible. The EI-MS confirmed the identity of cocaine in each sample. The IRMS data distinguished 12 of the 15 possible pair-wise comparisons at the 95% CL. Three samples could not be differentiated by their δ13C ratios for cocaine. ANOVA demonstrated that the measurement variance was consistently larger than the sample variance. As the δ13C values clearly show, this technique enables the exclusion of a potential common source even when two samples have otherwise identical chemical and physical properties.  相似文献   

19.
目的建立水中14种除草剂液相色谱-电喷雾离子阱质谱联用分析方法。方法水样经固相萃取,洗脱液过膜后直接进行液相色谱-电喷雾离子阱质谱联用分析。结果水中14种除草剂定量分析线性关系良好,相关系数为0.995~0.998,检测限在0.005μg/mL~0.045μg/mL之间,在低、中、高3个不同浓度下,平均回收率在70.5%~110.2%之间,日内RSD均小于10.2%,日间RSD均小于14.4%。结论该方法具有快速、灵敏、高效等优点,能够满足相关司法鉴定工作的要求。  相似文献   

20.
微波消解ICP-MS法检测生物检材中汞元素   总被引:1,自引:0,他引:1  
Ma D  Zhang D  Zhuo XY  Liu W  Shen BH  Shen M 《法医学杂志》2011,27(3):193-195
目的 建立生物检材中汞的电感耦合等离子体质谱分析方法.方法 采用微波消解法处理样品,以铟(115In)作内标,用电感耦合等离子体质谱仪对血液、尿液和头发中的汞含量进行分析.选择金与汞形成金汞齐,对金消除汞记忆效应的能力进行考察.结果 方法检出限为0.01μg/L,准确度为97.0%~107.1%.检测中添加金质量浓度在...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号