首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
When mitochondrial DNA (mtDNA) heteroplasmies are detected, they often confound forensic identification, especially if they are the result of poor biological sampling. In this study, we determined the ratio of heteroplasmy in samples that were amplified from a very small amount of template mtDNA or a few cells using a highly sensitive nested polymerase chain reaction (PCR) procedure and a direct sequencing analysis. As a result, more than half of the detected sequences (i.e., 17/20, 15/20, and 14/20) showed homoplasmy derived from a variation in the heteroplasmy proportion when only 10 copies of template mtDNA samples were amplified and analyzed. Additionally, with products amplified from one or several white blood cells (WBCs), several previously undetected heteroplasmies were detected. These results indicate the risks associated with using highly sensitive mtDNA techniques in forensic investigations because of the variable proportions of heteroplasmy or nucleotide substitutions that can possibly be detected from a very small biological sample.  相似文献   

3.
There is a growing interest among forensic geneticists in developing efficient protocols for genotyping coding region mitochondrial DNA (mtDNA) SNPs (mtSNPs). Minisequencing is becoming a popular method for SNP genotyping, but it is still used by few forensic laboratories. In part, this is due to the lack of studies testing its efficiency and reproducibility when applied to real and complex forensic samples. Here we tested a minisequencing design that consists of 71 mtSNPs (in three multiplexes) that are diagnostic of known branches of the R0 phylogeny, in real forensic samples, including degraded bones and teeth, hair shafts, and serial dilutions. The fact that amplicons are short coupled with the natural efficiency of the minisequencing technique allow these assays to perform well with all the samples tested either degraded and/or those containing low DNA amount. We did not observe phylogenetic inconsistencies in the 71 mtSNP haplotypes generated, indicating that the technique is robust against potential artefacts that could arise from unintended contamination and/or spurious amplification of nuclear mtDNA pseudogenes (NUMTs).  相似文献   

4.
Abstract: In this study, we analyzed the entire mtDNA control region in 61 unrelated individuals from the Pas Valley (Cantabria), a human isolate from northern Spain, to evaluate the suitability of this analysis to increase the power of discrimination of this locus for forensic purposes in human isolates. Low values obtained for the diversity parameters confirmed the relative isolation of this human group. The main findings of this study indicated that even the analysis of the entire mtDNA control region may have important limitations for use in forensic casework when dealing with human isolates: none of the 44 individuals who exhibited identical HVI‐HVII haplotypes could be further differentiated by analysis of segment HVIII. Nevertheless, analysis of the entire mtDNA control region proved to be useful to determine the ancestry of the samples examined, by contributing to the confirmation, and, on occasion, even to the refinement of the haplogroup assignment.  相似文献   

5.
Mitochondrial DNA typing screens with control region and coding region SNPs   总被引:2,自引:0,他引:2  
Mitochondrial DNA (mtDNA) analysis has found an important niche in forensic DNA typing. It is used with highly degraded samples or low-copy number materials such as might be found from shed hair or bones exposed to severe environmental conditions. The primary advantage of mtDNA is that it is present in high copy number within cells and therefore more likely to be recovered from highly degraded specimens. A major disadvantage to traditional forensic mtDNA analysis is that it is time-consuming and labor-intensive to generate and review the 610 nucleotides of sequence information commonly targeted in hypervariable regions I and II (HVI and HVII) of the control region. In addition, common haplotypes exist in HVI/HVII mtDNA sequences that can reduce the ability to differentiate two unrelated samples. In this report we describe the utility of two newly available screening assays for rapid exclusion of non-matching samples. The LINEAR ARRAY mtDNA HVI/HVII Region-Sequencing Typing Kit (Roche Applied Science, Indianapolis, IN) was used to type 666 individuals from U.S. Caucasian, African American, and Hispanic groups. Processing of the LINEAR ARRAY probe panels "mito strips" was automated on a ProfiBlot workstation. Observable variation in 666 individuals is reported and frequencies of the mitotypes within and between populations are presented. Samples exhibiting the most common Caucasian mitotype were subdivided with a multiplexed amplification and detection assay using eleven single nucleotide polymorphisms in the mitochondrial genome. These types of screening assays should enable more rapid evaluation of forensic casework samples such that only samples not excluded would be subjected to further characterization through full HVI/HVII mtDNA sequence analysis.  相似文献   

6.
Abstract:  Mitochondrial DNA (mtDNA) single nucleotide polymorphisms (SNPs) in an 11-plex assay were typed in three missing person cases involving highly degraded human remains. Unlike the traditional forensic approach to analyzing mtDNA which focuses on sequencing portions of the noncoding Control Region, this assay targets discriminatory SNPs that reside principally in the coding region. In two of the cases, the SNP typing successfully excluded one of two reference families that could not be excluded on the basis of mtDNA hypervariable region sequencing alone, and resulted in the final resolution of both decades-old cases. In a third case, SNP typing confirmed the sorting and reassociation of multiple commingled skeletal elements. The application of a specific mtDNA SNP assay in these cases demonstrates its utility in distinguishing samples when the most common Caucasian hypervariable region type is encountered in forensic casework.  相似文献   

7.
Approximately 81.7 million cats are in 37.5 million U.S. households. Shed fur can be criminal evidence because of transfer to victims, suspects, and/or their belongings. To improve cat hairs as forensic evidence, the mtDNA control region from single hairs, with and without root tags, was sequenced. A dataset of a 402-bp control region segment from 174 random-bred cats representing four U.S. geographic areas was generated to determine the informativeness of the mtDNA region. Thirty-two mtDNA mitotypes were observed ranging in frequencies from 0.6-27%. Four common types occurred in all populations. Low heteroplasmy, 1.7%, was determined. Unique mitotypes were found in 18 individuals, 10.3% of the population studied. The calculated discrimination power implied that 8.3 of 10 randomly selected individuals can be excluded by this region. The genetic characteristics of the region and the generated dataset support the use of this cat mtDNA region in forensic applications.  相似文献   

8.
Abstract: Mitochondrial DNA (mtDNA) analysis has proved useful for forensic identification especially in cases where nuclear DNA is not available, such as with hair evidence. Heteroplasmy, the presence of more than one type of mtDNA in one individual, is a common situation often reported in the first and second mtDNA hypervariable regions (HV1/HV2), particularly in hair samples. However, there is no data about heteroplasmy frequency in the third mtDNA hypervariable region (HV3). To investigate possible heteroplasmy hotspots, HV3 from hair and blood samples of 100 individuals were sequenced and compared. No point heteroplasmy was observed, but length heteroplasmy was, both in C‐stretch and CA repeat. To observe which CA “alleles” were present in each tissue, PCR products were cloned and re‐sequenced. However, no variation among CA alleles was observed. Regarding forensic practice, we conclude that point heteroplasmy in HV3 is not as frequent as in the HV1/HV2.  相似文献   

9.
Analysis of control mitochondrial DNA (mtDNA) hypervariable regions is sometimes the only available method to study hair evidence in forensic casework although being a laborious technique. Nowadays there is a huge interest in new genetic markers such as single nucleotide polymorphisms (SNPs) to type degraded forensic samples. For that purpose, a 10-Plex mitochondrial SNP for haplogroup typing, chosen from several SNP studies and useful to study the most common populations in our laboratory was applied in forensic casework. Hair shafts from three forensic cases with different ethnic backgrounds were studied with mtDNA sequencing and compared with mitochondrial SNPs (mtSNPs) study. Coding mtSNP typing prior to sequencing can allow for a rapid screening in forensic casework, which is emphasized in the first two cases. Moreover, in cases in which mtDNA sequencing fails, mtSNPs can still be detected. This 10 SNP loci multiplex provides a less expensive and simpler method for mitochondrial typing compared to control region mtDNA sequencing, especially when used as a fast screening method.  相似文献   

10.
用dHPLC技术检测线粒体DNA编码区单核苷酸多态性   总被引:4,自引:0,他引:4  
目的研究线粒体DNA(m tDNA)编码区单核苷酸多态性,建立检测m tDNA编码区单核苷酸多态性(SNP)的变性高效液相色谱(dHPLC)方法。方法设计针对线粒体DNA编码区nt10287-10679及nt8507-8805引物,应用dHPLC技术检测其序列多态性。结果100例中国汉族无关个体中,m tDNA nt10287-10679检出13个SNP位点,13种单倍型,基因多样性(H)为70.79%,偶合概率(P)为29.92%;m tDNA nt8507-8805检出10个SNP位点,12种单倍型,H为70.42%,P为30.28%;两段序列联合起来共检出23个SNP位点,23种单倍型,H为84.14%,P为16.70%。结论所建立的dHPLC方法可用于快速、准确地检测m tDNA编码区序列多态性;m tDNA编码区多态性位点作为m tDNA控制区多态性位点的补充,联合应用可以提高m tDNA的个体识别能力。  相似文献   

11.
The mtDNA analysis (mtDNA) is increasingly being demanded for forensic purposes due to the fact that many times the use of standard nuclear marker fails to analyze degraded samples (such as bones) and specially for the analysis of hair shafts (a common sample in the crime scene). However, analysis of mtDNA sequencing implies a great lab effort when a high number of samples must be analyzed.The present work introduces a novel and reliable method for the screening of mtDNA variation in the first and second hypervariables (HV1 and HV2) regions which we have denominated fluorescent single strand conformation polymorphism (SSCP) of overlapping fragments (FSSCP-OF). FSSCP-OF is based on the basic theory of SSCP analysis and combines two complementary strategies: the use of PCR amplified overlapping fragments and fluorescent detection technology. The overlap region contains a high percentage (50%) of the d-loop mtDNA variation and for this reason, the probability to detect a polymorphic position by SSCP analysis is clearly increased in comparison to conventional SSCP methods due to the fact that the same polymorphic position is usually placed in a different "relative" position in the two overlapped fragments. The use of multicolor fluorescent technology allows also the multiplex amplification of overlapping fragment and its subsequent analysis in an automatic sequencer. We have analyzed 50 samples of unrelated individuals through the FSSCP-OF technique and we have found that using this methodology the probability to distinguish two samples with different sequences is close to 100%. FSSCP-OF has other important advantages with respect to previous screening methods, such as the automation and standardization of the protocols, which is of special interest for the forensic routine.  相似文献   

12.
Analysis of the polymorphic sequences in mitochondrial DNA (mtDNA) has been widely applied to forensic tests and anthropology studies. However, these polymorphic data in human have thus far been derived from the displacement-loop and intergenic regions only. Here, we report the identification of clustered polymorphic sites in the mitochondria coding region encompassing position 8389–8865. The DNA sequences of 119 unrelated Chinese were determined by PCR amplification and direct sequencing. The results showed that heteroplasmy was found in five individuals, 39 sites were noted in this 477 bp region, and 41 haplotypes were identified. The probability of identity and allelic diversity were estimated as 0.1265 and 0.8809, respectively. The results suggest that sequence polymorphism from position 8389–8865 in human mtDNA can be used as a marker for identity investigation.  相似文献   

13.
Analysis of mitochondrial DNA (mtDNA) sequence from human hairs has proven to be a valuable complement to traditional hair comparison microscopy in forensic cases when nuclear DNA typing is not possible. However, while much is known about the specialties of hair biology and mtDNA sequence analysis, there has been little correlation of individual information. Hair microscopy and hair embryogenesis are subjects that are sometimes unfamiliar to the forensic DNA scientist. The continual growth and replacement of human hairs involves complex cellular transformation and regeneration events. In turn, the analysis of mtDNA sequence data can involve complex questions of interpretation (e.g., heteroplasmy and the sequence variation it may cause within an individual, or between related individuals. In this paper we review the details of hair developmental histology, including the migration of mitochondria in the growing hair, and the related interpretation issues regarding the analysis of mtDNA data in hair. Macroscopic and microscopic hair specimen classifications are provided as a possible guide to help forensic scientists better associate mtDNA sequence heteroplasmy data with the physical characteristics of a hair. These same hair specimen classifications may also be useful when evaluating the relative success in sequencing different types and/or forms of human hairs. The ultimate goal of this review is to bring the hair microscopist and forensic DNA scientist closer together, as the use of mtDNA sequence analysis continues to expand.  相似文献   

14.
Abstract: Very little genetic data exist on Haitians, an estimated 1.2 million of whom, not including illegal immigrants, reside in the United States. The absence of genetic data on a population of this size reduces the discriminatory power of criminal and missing‐person DNA databases in the United States and Caribbean. We present a forensic population study that provides the first genetic data set for Haiti. This study uses hypervariable segment one (HVS‐1) mitochondrial DNA (mtDNA) nucleotide sequences from 291 subjects primarily from rural areas of northern and southern Haiti, where admixture would be minimal. Our results showed that the African maternal genetic component of Haitians had slightly higher West‐Central African admixture than African‐Americans and Dominicans, but considerably less than Afro‐Brazilians. These results lay the foundation for further forensic genetics studies in the Haitian population and serve as a model for forensic mtDNA identification of individuals in other isolated or rural communities.  相似文献   

15.
Sequence analysis of the mitochondrial DNA (mtDNA) control region is of central importance for forensic identity testing as well as for studies of human evolution. Here we report the sequencing data of the hypervariable regions I and II from 50 unrelated individuals from a western German population (Rhine area). In regions I and II, 52 and 26 sites of sequence polymorphism, respectively, were noted. Nucleotide substitution rather than insertion/deletion was the majority of variation. The distribution showed a large bias towards transitional changes than transversional changes. Furthermore we investigated uniparental inheritance in seven CEPH families each family with 7–9 maternal descendants. Most maternal relatives shared identical mtDNA sequences. Additionally sequences were compared for father:child pairs and as expected no evidence for paternal transmission of mtDNA was observed. The high variability of mtDNA control region sequences permits utility in forensic identity investigations. The data also indicate that the neomutation rate seems to be very low from one generation to the other.  相似文献   

16.
In some forensic cases, nuclear DNA is degraded and cannot be analyzed. In such a case mitochondrial DNA (mtDNA) is usually used in forensic cases for identification because of its special features as high number of copies per cell, maternal inheritance and high mutation rate. Single nucleotide polymorphisms (SNPs) represent the most abundant class of human polymorphisms. The aim of this study was optimization of 10 mtDNA SNPs by using SNaPshot minisequencing technique on ABI310 genetic analyser in forensic molecular genetics laboratory. At the end of this study, the optimization of minisequencing technique was done by changing some assay parameters. Also, during the optimization of 10 mtSNP loci in our laboratory.  相似文献   

17.
Entire mitochondrial control region sequences were generated from 377 unrelated individuals from urban Hong Kong. In line with other control region datasets from China, the sample from Hong Kong exhibited significant genetic diversity that was reflected in a random match probability of 0.19% and a mean pairwise difference of 13.14. A total of 305 haplotypes were identified, of which 262 were unique. These sequences will be made publicly available to serve as forensic mtDNA reference data for China.  相似文献   

18.
中国朝鲜族线粒体DNA编码区序列多态性   总被引:1,自引:0,他引:1  
目的调查中国朝鲜族群体线粒体DNA(mtDNA)编码区内5个部位 3954~4506nt、5218~5974nt、7942~871Int、10296~10653nt 及14496~14867nt的序列多态性。方法采用PCR产物直接测序方法,对212名中国朝鲜族(吉林省延边地区)无关个体进行序列多态性变化和单倍型分布调查。结果在212名无关个体中,共分出148种单倍型。遗传变异度为0.9931,耦合概率为0.0116。测序结果与Anderson标准序列比较,共检测出109个变异位点,其中79个已收录于MITOMAP。结论mtDNA编码区多态性联合应用可以提高mtDNA的个体识别能力。町为相关遗传学研究提供基础数据资料。  相似文献   

19.
线粒体DNA(mtDNA)异质性的存在使其在法医学应用变得复杂。本文对mtDNA异质性形成的可能原因、异质性的分布和遗传特点、异质性的筛查和定量方法、异质性对法医学的影响以及异质性的研究和展望等方面进行综述,探讨异质性在法医学上的应用价值。  相似文献   

20.
In order to expand the database of variable DNA for forensic identification purposes in Venezuela, we analyzed the sequence polymorphisms of mitochondrial DNA (mtDNA) hypervariable regions (HVR) I–III from 100 unrelated individuals from the city of Caracas, using PCR amplification and fluorescent-based capillary electrophoresis sequencing method. Dominant haplogroups corresponded to Native Americans followed by African ones. The inclusion of HVR III although useful for sub-haplogroup assignation, added little to the discrimination capacity of our database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号