首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
STR profiling using hard tissues obtained from a severely decomposed body is sometimes a laborious work. There is now on a market a new DNA extraction kit, PrepFiler™ Forensic DNA Extraction Kit (AppliedBiosystems), and we tested it for missing persons. Postmortem intervals ranged from weeks to several years. Fifteen bone fragments and eleven nails were used in this report. Genomic DNA was quantified by QuantiFiler® DUO Quantification Kit (AppliedBiosystems), and STRs were analyzed using AmpFlSTR® Identifiler® PCR Amplification Kit (AppliedBiosystems). The profiling of 16 STR loci was successful in all nail samples. However, STR profiling was successful in only 6 of 15 bone materials. Nine cases failed to analyze STR polymorphisms using another DNA extraction kit, the QIAamp DNA Mini Kit (QIAGEN). For bone samples, it seems that STR profiling depends on the quality of samples.  相似文献   

2.
Within the initial step of the forensic DNA analysis process, the DNA extraction efficiency and especially the removal of potential PCR inhibitors is crucial for subsequent steps, e.g. quantification by real-time PCR and amplification of short tandem repeats (STRs). The protocol of the PrepFiler™ Forensic DNA Extraction Kit was optimized for the application on a Tecan liquid handling workstation Freedom EVO® 150. This modified application of the PrepFiler™ technology was compared with respect to DNA yield, sensitivity and the ability to remove potential PCR inhibitors to an established routine method working on the same liquid handling workstation based on ChargeSwitch® Technology (CST) from Invitrogen.  相似文献   

3.
Forensic DNA analysis is a multi-step process involving extraction of DNA, quantification of human DNA in the extract, amplification using multiplex STR systems, separation of products, and data analysis. The backlog of forensic casework is increasing worldwide. Automation is one significant way to alleviate the bottleneck of sample processing in forensic labs. The HID EVOlution™ Combination System described here is a robust, reliable sample processing platform, easily adapted to forensic laboratory workflows. Using a variety of forensic sample types including: blood stained FTA paper, cotton fabric and denim, dried blood spiked with known PCR inhibitors, saliva on cotton swabs, and semen stains, we found that yields of human DNA and STR profiles obtained with AmpFlSTR® Idenitfiler® kits were complete, highly reproducible, and equivalent to results obtained using the manual PrepFiler™ reagent extraction method. Automated operation was clean, and no cross-contamination was detected between extraction blanks and interspersed high DNA content samples.  相似文献   

4.
In human identification, the victim's toothbrush is an invaluable personal item as the deposited cellular material contains DNA from which a reference profile can be produced. The profile obtained then allows direct comparison to be made with the profile from the unidentified body. This study was undertaken to determine the minimum number of bristle bundles that would generate a complete DNA profile. The minimum period of usage for a toothbrush to retain enough cells for genotyping was also investigated. We also tested two commonly used DNA extraction methods: QIAamp® DNA Mini Kit and Chelex® 100 to explore the efficiency of these protocols in recovering DNA from toothbrushes. In this experiment, volunteers brushed their teeth for 1, 7, 14, or 30 days. DNA was extracted from 5 and 10 bundles of bristles cut from the collected toothbrushes. The amount of DNA recovered was quantified by quantitative real-time PCR, and DNA genotyping was performed for each sample. Data revealed that QIAamp® DNA Mini Kit performed better at yielding DNA in terms of purity, quantity, and quality than Chelex® 100. It was also found that, with a suitable method of recovery, DNA samples from five bundles of bristles from all of the toothbrushes generated complete profiles. Based on the experimental results, a general guideline concerning the appropriate extraction method and the quantity of the starting material for the analysis of DNA from toothbrushes could be suggested.  相似文献   

5.
FTA Cards (GE Healthcare) have been used for more than 4 years in Denmark for the collection of buccal cells as reference samples in crime cases. Semi-automated protocols for STR typing of DNA on punches of FTA Cards are routinely used. In average, full STR profiles were generated from approximately 95% of the FTA Cards with a standard punching protocol, while partial or no STR profile were obtained from 5% of the samples. Here, the Qiagen BioRobot® EZ1 Workstation (Qiagen) and the EZ1 DNA Investigator Kit (Qiagen) was used to extract DNA from 29 FTA Cards from which a complete STR profile was not generated with the standard punching protocol. All 29 samples were successfully typed with the AmpF?STR® Identifiler™ PCR Amplification Kit (Applied Biosystems) and with the SNPforID 49plex SNP assay. The lowest amount of DNA that resulted in complete STR and SNP profiles was 80 pg. The STR and SNP profiles were identical to those generated from another sample collected from each of the 29 individuals.  相似文献   

6.
We have implemented and validated customized protocols for automated Quantifiler® setup, template normalization and PCR setup using the Tecan HID EVOlution™ qPCR/STR setup. The protocols were validated for the Quantifiler® human DNA quantification, AmpF?STR® SGM Plus® and SEfiler Plus™ PCR Amplification Kits (Applied Biosystems) according to EN/ISO 17025.  相似文献   

7.
Manual Chelex®-100 and organic extractions (phenol/chloroform) are used as routine methods at the Swedish National Laboratory of Forensic Science, SKL. The aim of this study was to find an automated DNA purification system to replace the organic method. The following methods were evaluated and compared to each other and to the organic method used routinely; BioRobot® EZ1 with EZ1 DNA Investigator Kit and Card (Qiagen), iPrep™ Purification Instrument with iPrep™ ChargeSwitch® Forensic Kit and Card (Invitrogen), Magnatrix™ 1200 Workstation with the Magnatrix™ gDNA Blood Kit Forensic and two different protocols; Forensic protocol A and B (Magnetic Biosolutions). Blood on fats, cotton swabs, moist snuff, paper towels and leather, post-mortem blood and muscle tissue were extracted with the different methods. DNA concentration and quality of the electropherograms were examined. Individual comparisons between the four extraction methods showed that iPrep™ and Magnatrix™ 1200 gave significantly lower mean quantities compared to BioRobot® EZ1 and the organic extraction method (p < 0.05). There were no significant differences between the latter two. BioRobot® EZ1 generated the best results and is in the process of being validated for routine analysis at SKL.  相似文献   

8.
Since its introduction in 2002, the AmpF?STR® SEfiler™ kit has provided a highly discriminating DNA profiling option to German forensic laboratories by combining the widely used SGM Plus® Kit loci with the SE-33 locus required for the German DNA Database. Whilst proving successful on database samples, laboratories using the SEfiler™ kit have reported the need for chemistry better able to handle the ever-increasing number of casework samples.The new AmpF?STR® SEfiler Plus™ kit contains the same loci and primer sequences as the SEfiler™ kit but uses improved synthesis and purification processes to minimize the presence of dye-labeled artifacts. Other improvements include modified PCR cycling conditions for enhanced sensitivity and a new buffer formulation that improves performance with inhibited samples when compared to the original SEfiler™ kit.Validation studies demonstrating the effectiveness of the multiplex are presented with emphasis on the models of inhibition and casework samples.  相似文献   

9.
Five DNA extraction systems were assessed for their DNA extraction efficiency on samples of fresh pig bone. Four commercially available silica-based extraction kits (ChargeSwitch® gDNA Plant Kit (Life Technologies), DNA IQTM System Kit (Promega), DNeasy® Blood & Tissue Kit (Qiagen) and PrepFiler® BTA Forensic DNA Extraction Kit (Life Technologies)) and a conventional phenol-chloroform method were tested in this study. Extracted DNA samples were quantitated with GoTaq® qPCR Master Mix (Promega) using an Applied Biosystems® 7500 Real-Time PCR System and the extracts were amplified using an in-house multiplex system. The phenol-chloroform extraction produced higher yields of DNA than the silica-based extraction methods. Among the silica-based extractions ChargeSwitch® gDNA Plant Kit recovered the highest amounts of DNA. However, all methods produced DNA that could be amplified and none of the extracts contained any detectable inhibition.  相似文献   

10.
DNA IQ磁珠法结合Maxwell~(TM) 16自动仪提取接触DNA   总被引:1,自引:0,他引:1  
目的研究DNA IQ磁珠法结合MaxwellTM 16自动仪对接触DNA提取的应用价值。方法 151份案件接触DNA检材95℃裂解后,采用DNA IQ磁珠法结合MaxwellTM 16自动仪提取DNA,然后进行DNA定量和STR分型检测,统计各种类型的接触DNA含量I、PC CT值和STR分型成功率。结果 151份案件接触DNA检材中,除果核平均DNA获得量为9.51ng以外,其它接触检材的平均DNA获得量均大于10ng,烟蒂检验成功率最高为93%,果核检验成功率较低,为60%。所有DNA样品的IPC CT值均在27左右,纯度高。结论大部分接触DNA检材采用DNA IQ磁珠法结合MaxwellTM 16自动仪可提取到足以进行STR分型的DNA。  相似文献   

11.
Forensic databasing laboratories routinely analyze blood or buccal cell samples deposited on FTA® paper. Prior to PCR amplification of the STRs, the FTA® samples must undergo multi-step sample purification protocols to remove the PCR inhibitors present within the sample and from the FTA® paper. The multi-step sample purification protocols are laborious, time-consuming and increase the potential for sample cross-contamination.To eliminate the need for DNA purification, we conducted studies to optimize the PCR buffer and thermal cycling parameters to allow for direct amplification of STRs from blood or buccal samples on FTA® paper. We evaluated the effect of various factors on the DNA profile including: FTA® disc size, blood sample load variation, and buffer formulation. The new STR assay enables the direct amplification of DNA from single source samples on FTA® discs without sample purification. The new STR assay improves the workflow by eliminating tedious steps and minimizing sample handling. Furthermore, the new STR assay reduces cost by eliminating the need for purification reagents and expensive robots.  相似文献   

12.
Abstract: The AutoMate Express? Forensic DNA Extraction System was developed for automatic isolation of DNA from a variety of forensic biological samples. The performance of the system was investigated using a wide range of biological samples. Depending on the sample type, either PrepFiler? lysis buffer or PrepFiler BTA? lysis buffer was used to lyse the samples. After lysis and removal of the substrate using LySep? column, the lysate in the sample tubes were loaded onto AutoMate Express? instrument and DNA was extracted using one of the two instrument extraction protocols. Our study showed that DNA was recovered from as little as 0.025 μL of blood. DNA extracted from casework‐type samples was free of detectable PCR inhibitors and the short tandem repeat profiles were complete, conclusive, and devoid of any PCR artifacts. The system also showed consistent performance from day‐to‐day operation.  相似文献   

13.
The PrepFiler™ is a new kit recently introduced by Applied Biosystems for DNA extraction from a wide range of forensic samples. In the present study we tested the performance of PrepFiler™ kit against other commonly used commercially available kits on a variety of real forensic casework samples: bloodstains on different substrates, washed bloodstains, semen stains, saliva stains, hairs, bones, tissues, nails, prints after chemical treatments, skin swabs.  相似文献   

14.
Bones and teeth often represent the only sources of DNA available for identifying human remains. DNA in bones and teeth is generally better preserved than that in soft tissues because of the presence of hard connective tissue with a high level of calcium. Because of the extensive mineralisation, the choice of an efficient DNA extraction procedure is important to minimise the sampling of a high level of minerals and to remove polymerase chain reaction (PCR) inhibitors. Some protocols are available for DNA extraction from bones and teeth as part of the Qiagen EZ1 DNA Investigator Kit using the EZ1 Advanced XL automated purification platform. To improve the efficiency of DNA extraction from skeletal remains, the present study focuses on a modification to these already available protocols. In this study, different bones and teeth collected between 1 and 50 years after death were subjected to DNA extraction using the standard EZ1 protocol, a supplementary protocol, and a modified protocol. The modified approach included a decalcification step, whereas the Qiagen protocols worked directly on non-decalcified powder. In all three procedures, 150 mg samples were used for DNA extraction. We evaluated the quantity of DNA recovered from samples, the presence of any PCR inhibitors co-extracted, the level of DNA degradation, the quality of short tandem repeat (STR) profiles, and the reproducibility of the modified procedure. When compared with the other protocols, the modified protocol resulted in the best recovery of DNA that was free of PCR inhibitors. Additionally, the STR profiles were reliable and of high quality. In our opinion, the decalcification step increases DNA recovery by softening tissues, which allows lysis solutions to act more effectively. Furthermore, the use of two lysis solutions and the variation added to the EZ1 purification step allow for DNA recovery with quality and quantity superior to those of the previously available Qiagen-based protocols. These findings may be helpful solutions to the problems commonly encountered when dealing with difficult samples, such as bones and teeth.

Key points

  • Bones and teeth often represent the only sources of DNA for identifying human remains.
  • The choice of an efficient DNA extraction procedure is important for maximizing DNA recovery and removing PCR inhibitors.
  • This study focuses on modifications to the previously available Qiagen-based protocols.
  • The modified protocol enabled the best recovery of DNA, and both quality and quantity were superior to those of the previously available Qiagen-based protocols.
  • The STR profiles obtained from samples extracted using the modified protocol were reliable and of high quality.
  相似文献   

15.
It is proposed that a DNA stabilizing solution (DNA Genotek Inc.) designed to preserve DNA in saliva samples at room temperature can be extrapolated to the storage of swab heads. The aim of this study was to evaluate the effectiveness of the solution for the preservation of reference swabs (buccal) and trace samples (facial swabs). To this end, the solution was used during a twin-site DNA transfer project assessing background levels of carer DNA present in children. Tubes containing 400 μl of solution were used to store and transport swab heads. At the laboratory, samples were extracted using the QIAamp DNA Mini Kit (Qiagen), quantified using the Quantifiler Duo Kit and profiled using the AmpF?STR® SGM Plus® PCR Amplification Kit (both Applied Biosystems). Twenty-eight PCR cycles were applied to all samples. Thirty-four cycles or a longer electrophoresis injection time was applied to trace samples where necessary. All Reference swabs produced high quantities of DNA and full DNA profiles after 28 cycles. Profile morphology indicated good quality DNA with no degradation. Of the trace samples, sufficient profiles were achieved to study the transfer of carer DNA making the solution fit for continued use in this project. DNA stabilizing solution enables the storage and transportation of swabs without freezing. This is convenient, reduces transportation costs and enables instant analysis of samples upon arrival at the laboratory. This is a useful alternative for a multi-site research project as well as a reliable storage tool for use in remote areas.  相似文献   

16.
Analysis of forensic samples to evaluate the rate of success for molecular markers: autosomal STRs, Y chromosome, and mitochondrial DNA. Since 2006 to date a total of 390 forensic samples were analyzed: bones, teeth, hairs, swabs, stains and paraffin embedded tissue. Bones and teeth, were pulverized in a Freezer Mill, extracted by chloroform/phenol/isoamyl alcohol method, and then purified with Centricon 100 columns. DNA from paraffin was extracted with QIAmp DNA Mini kit (QIAGEN). Mitochondrial DNA Control Region sequences were determined for regions HV1/HV2. Sequencing was performed using the BigDye® Terminator v 1.1 Kit and analyzed in ABIPRISM® 3100 Genetic Analyzer (AB). STRs were amplified using Amp FlSTR Identifiler®, Minifiler® and YFiler® Kit (AB) and analyzed in ABI PRISM® 3100 Genetic Analyzer and ABI PRISM® 3130xl Genetic Analyzer (AB). Among forensic samples, bones and teeth analyzed for autosomal STRs, we obtained successful results in all of them. Incomplete typing are represented by loci of higher molecular weight, which demonstrates the poor quality of the sample due to its state of degradation and obtained better results using mini STRs. Successful results in sequencing for mitochondrial HV1 region for all samples analyzed, but in few hair samples we obtained mixed sequences and that represented important difficulties for the analysis. Age of samples and conservation are factors related which affect DNA viability. Autosomal STRs solved all the samples analyzed in our study, but Y chromosome analysis and mitochondrial DNA sequencing are also important and necessary markers in some forensic cases.  相似文献   

17.
18.
目的探讨改良EVO150-8方法在批量生物检材DNA检验中的应用价值,建立一种自动化、简单、快速的DNA提取方法。方法采用改良EVO150-8自动化核酸提取纯化仪器与DNA IQ磁珠法纯化试剂盒,对各现场提取的880份血迹、烟蒂、口香糖、精斑(混合斑)、组织、骨骼、脱落细胞等常见生物检材进行DNA提取与纯化,采用Identifiler试剂盒进行扩增检验,用3130XL电泳,GeneMapper ID V3.2分析软件进行分析比对。结果在880份生物检材中,有836份检材成功获得STR分型;检验92份检材仅需时128min。结论改良EVO150-8适合批量生物检材的自动化提取。  相似文献   

19.
With the aim to asses the efficiency of the DNA IQ System in the recovery of DNA from semen samples, cotton swabs were prepared from 1/5 serial dilutions of semen. Each swab was fractionated in four equivalent quarters and the DNA was further extracted following the differential lysis protocol. The recovered DNA was quantified by means of real time PCR and the average DNA yield was used to compare results. Direct extractions of equivalent aliquots of each semen dilution were used as reference samples. Even though a high percentage of the starting material was lost during the process of transfer to/recover from the solid support, our experimental results demonstrated that the DNA IQ system was able to detect around 103 sperm cells in the starting material, enabling to obtain a complete DNA profile with AmpFl STR IdentiFiler PCR Amplification Kit (Applied Biosystems).  相似文献   

20.
The goal of this work was to optimize and validate a fast amplification protocol for the multiplex amplification of the STR loci included in AmpFlSTR® Profiler Plus® to expedite human DNA identification. By modifying the cycling conditions and by combining the use of a DNA polymerase optimized for high speed PCR (SpeedSTAR™ HS) and a more efficient thermal cycler instrument (Bio-RAD C1000™), we were able to reduce the amplification process from 4 h to 26 min. No modification to the commercial AmpFlSTR® Profiler Plus® primer mix was required. When compared to the current Royal Canadian Mounted Police (RCMP) amplification protocol, no differences with regards to specificity, sensitivity, heterozygote peak height ratios and overall profile balance were noted. Moreover, complete concordance was obtained with profiles previously generated with the standard amplification protocol and minor alleles in mixture samples were reliably typed. An increase in n − 4 stutter ratios (2.2% on average for all loci) was observed for profiles amplified with the fast protocol compared to the current procedure. Our results document the robustness of this rapid amplification protocol for STR profiling using the AmpFlSTR® Profiler Plus® primer set and demonstrate that comparable data can be obtained in substantially less time. This new approach could provide an alternative option to current multiplex STR typing amplification protocols in order to increase throughput or expedite time-sensitive cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号