首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 17 毫秒
1.
为构建可有效抵抗猪流行性腹泻病毒(PEDV)入侵的诱导黏膜免疫反应的核酸疫苗,采用RTPCR方法扩增了PEDV SC-L株的S基因主要抗原编码区域(简称S1),插入pMD19-T载体,构建载体pMD19-T-S1,再将S1基因片段插入双启动子真核表达载体pVAXD中,构建了pVAXD-S1表达载体。经免疫荧光法鉴定S1基因可在COS-7细胞中正常表达后,将pVAXD-S1电转入减毒鼠伤寒沙门菌SL7207中,构建了携带S1基因的重组减毒沙门菌SL7207(pVAXD-S1),并对该重组菌株的生长曲线、携带质粒的稳定性、口服小鼠的安全性及目的基因在体内转录等特性进行了鉴定。结果显示,SL7207(pVAXD-S1)在含卡那霉素(100μg/mL)的培养环境中稳定性良好,以每只1×109 CFU口服免疫BALB/c小鼠具有良好的安全性,携带的S1基因能在小鼠回肠末端组织内正常转录及表达。本研究为深入开展减毒沙门菌疫苗菌株SL7207(pVAXD-S1)的免疫评价及构建PEDV与其他抗原基因联合免疫DNA疫苗奠定了基础。  相似文献   

2.
为了构建表达猪瘟病毒E2蛋白的口服重组减毒鼠伤寒沙门氏菌活载体疫苗株,亚克隆猪瘟病毒E2基因,将其插入到表达载体pYA3341中,构建了重组质粒pYA3341-E2。将该重组质粒电转入鼠伤寒沙门氏菌疫苗株X4550(缺失asd、cya、crp基因),获得重组疫苗菌株X4550(pYA3341-E2),并对重组菌表达的E2蛋白进行SDS-PAGE和Western-blot分析、测定其在体内外的稳定性、生长曲线、安全性及动物免疫试验。结果显示,重组菌能表达E2蛋白且表达的蛋白能与猪瘟病毒阳性血清特异性结合。在体外营养选择压力下,重组菌株在体外可稳定地携带重组质粒传代繁殖,在体内可稳定地定居于肠系膜淋巴结和脾。小鼠口服试验证实重组菌无毒性,安全可靠。动物免疫试验表明,口服重组菌免疫猪产生了抗E2蛋白抗体。淋巴细胞增殖试验表明,重组菌能诱导机体产生较强的细胞免疫应答。结果表明,成功构建了能稳定表达猪瘟病毒E2蛋白的口服减毒鼠伤寒沙门氏菌疫苗株,为研究猪瘟口服基因工程疫苗奠定了基础。  相似文献   

3.
采用PCR法扩增猪圆环病毒2型(PCV2)ORF2抗原优势区(ORF2′)基因和猪细小病毒(PPV)VP2基因,将目的基因定向插入真核表达载体pCI-neo,构建了重组质粒pCI-ORF2′-VP2。将重组质粒免疫小鼠,同时设立PCV亚单位疫苗、PPV灭活疫苗和空载体对照组,采用MTT比色法、流式细胞术和ELISA法分别对免疫小鼠脾淋巴细胞的转化功能,外周血CD4+和CD8+T淋巴细胞比例,PCV2和PPVIgG抗体效价进行了检测。结果表明,从免疫后第7d起,pCI-ORF2′-VP2免疫小鼠脾淋巴细胞的增殖活性,外周血CD4+、CD8+T淋巴细胞比例和抗PCV2、PPV的特异性抗体效价都显著(P0.05)或极显著(P0.01)高于空载体对照组,且重组质粒组在第21~42d诱导的免疫水平显著或极显著强于PPV灭活疫苗组。证实,构建的重组质粒pCI-ORF2′-VP2能够诱导小鼠产生良好的细胞免疫和体液免疫应答。  相似文献   

4.
山羊痘DNA疫苗pVAX1-P32的构建及其安全性评估   总被引:1,自引:0,他引:1  
为了构建山羊痘病毒(GPV)P32基因真核表达质粒pVAXl-P32,探讨pVAXl-P32重组表达质粒作为DNA疫苗在小鼠体内的组织分布和生物安全性。以pMD18-T-P32/LD为模板,通过PCR扩增GPVP32基因片段,并定向插入真核表达载体pVAX1中,构建重组表达质粒pVAX1-P32,将其转入大肠杆菌DH5α中,筛选阳性克隆进行双酶切与PCR鉴定。大量提取纯化重组质粒pVAX1-P32,经肌肉注射免疫小鼠,于免疫后不同时间剖杀小鼠,分别采集心肌、肝、脾、肺、肾、脑、十二指肠、腿肌、血液等组织样品,抽提总DNA,利用PCR分析pVAX1-P32在小鼠组织内的动态分布及其与宿主细胞染色体的整合情况;同时,以PCR技术检测免疫小鼠粪便,分析pVAX1-P32重组表达质粒在外界环境中的释放情况。结果表明,真核表达重组质粒pVAX1-P32的双酶切鉴定及PCR扩增结果与预期结果相符;肌肉注射小鼠后,pVAX1-P32迅速分布到小鼠其他组织器官中,同时,未发现pVAX1-P32与宿主细胞染色体有整合现象;粪便中也均未检测到目的基因。表明,成功构建了真核表达重组质粒pVAX1-P32,且其作为疫苗对动物和环境是安全的。  相似文献   

5.
采用PCR方法扩增了布鲁氏菌17.3 ku外膜蛋白编码基因,并将该基因克隆至真核表达载体pcDNA3.1(+)中,成功构建了真核表达质粒pcDNA3.1-omp17.3。pcDNA3.1-omp17.3转染COS-7细胞后,通过Western-blotting检测到了17.3 ku蛋白的瞬时表达。将pcDNA3.1-omp17.3免疫小鼠,三免后经ELISA、流式细胞仪以及ELISPOT技术检测到pcDNA3.1-omp17.3在小鼠体内诱导产生了以Th1型为主的细胞免疫应答。结果表明,构建的基因疫苗可作为潜在的布鲁氏菌新型疫苗,有进一步研究的意义。  相似文献   

6.
在沙门氏菌invH基因重组表达的基础上,研究invH基因表达蛋白的免疫保护功能。采用PCR技术对鼠伤寒沙门氏菌DT104株的入侵基因H进行扩增,将其克隆到原核表达载体pGEX-4T-3中,将重组克隆进行融合蛋白表达、纯化和Western-blot检测,用油乳剂制备融合蛋白疫苗,将该疫苗通过3种不同剂量(40μg/只、60μg/只、80μg/只)免疫注射小鼠进行免疫保护效果测定,同时设油乳剂灭活疫苗组和PBS空白对照组,采用黏附与黏附抑制试验对抗血清的活性进行分析。结果表明,构建的重组克隆成功表达了44ku的融合蛋白GST-invH,且该蛋白具有良好的免疫原性。3种剂量重组蛋白疫苗间的免疫效果差异不显著,均能提高小鼠体内IL-4和IFN-γ的含量,与空白对照组差异显著(P<0.05);油乳剂灭活疫苗组的保护率为90%,3种剂量重组蛋白疫苗组的保护率均在60%以上,虽然重组蛋白疫苗的保护效果不及油乳剂灭活疫苗,但与空白对照组差异均极显著(P<0.01)。体外黏附抑制试验结果显示,抗融合蛋白GST-invH的抗体能抑制沙门氏菌对靶细胞的黏附。表明,GST-invH融合蛋白具有良好的免疫保护性。  相似文献   

7.
为了构建TGEV S-N融合双基因疫苗并分析其免疫原性,从S、N基因克隆质粒中以PCR扩增了S基因(2.1kb,含A、B、C、D抗原位点)和N基因(1.2kb),将S基因插入pVAX1载体构建了pVAX-S质粒,再将N基因插入pVAX-S中S基因末端,构建了融合表达S、N双基因的重组质粒pVAX-S-N,将pVAX-S-N转染COS7细胞以免疫荧光试验进行S、N双基因的表达鉴定。用纯化的pVAX-S-N和作为对照的pVAX-S、pVAX1、PBS免疫BALB/c小鼠,共免疫3次,分别测定免疫后第0、14、28、42天的小鼠血清IgG抗体,测定免疫后第42天小鼠外周血T淋巴细胞亚群(CD3+、CD4+、CD8+)的数量。结果,融合质粒pVAX-S-N可在COS7细胞特异性表达S、N两个蛋白,pVAX-S-N免疫小鼠后第14天即可诱导产生抗TGEV的特异性IgG,但pVAX-S-N诱导的抗体水平一直低于pVAX-S诱导的抗体水平,在免疫后第42天差异极显著(P<0.01);pVAX-S-N可激发小鼠产生细胞免疫应答,但pVAX-S-N组的CD3+、CD4+、CD8+数量均低于pVAX-S免疫组。研究结果表明,融合双基因疫苗pVAX-S-N具有免疫原性,但免疫效果却不如单基因疫苗pVAX-S的理想。  相似文献   

8.
为构建含日本血吸虫抱雌沟蛋白(SjGCP)完整ORF的核酸疫苗,评估该核酸疫苗在小鼠体内诱导抗血吸虫感染的免疫保护效果及其保护机制,将编码日本血吸虫大陆株抱雌沟蛋白基因ORF片段克隆到真核表达载体pVAX1中,用重组质粒pVAX1-SjGCP三次肌肉注射BALB/c小鼠,攻击感染血吸虫尾蚴,攻击感染后第42天剖杀小鼠冲虫,计算减虫率及肝和粪便的减卵率,评估其免疫保护效果。用流式细胞术(FCM)检测第3次免疫后小鼠淋巴细胞亚群CD4+、CD8+占总淋巴细胞的百分比及细胞因子IL-4、IFN-γ表达水平,探讨核酸疫苗的免疫机制。结果显示,小鼠经pVAX1-SjGCP质粒免疫后诱导了31.9%的减虫率,以及47.85%、68.04%的肝减卵率和粪便减卵率,与PBS组差异显著;pVAX1-SjGCP免疫组淋巴细胞亚群CD4+、CD8+百分比增加,细胞因子IFN-γ及特异性IgG水平提高,与pVAX1组差异显著。结果表明,血吸虫抱雌沟蛋白基因DNA疫苗能够诱导宿主细胞免疫和体液免疫应答,产生Th1/Th2型混合的细胞免疫反应,具有一定的抗血吸虫感染的免疫保护效果。  相似文献   

9.
用含刀豆蛋白的营养液培养大熊猫外周血中分离的淋巴细胞,72h后抽提RNA。设计1对引物,通过RT-PCR方法对大熊猫GM-CSF基因片段进行扩增。测序后对其进行分析,并将该序列克隆到pCI-neo真核载体中,命名为pCI-G,然后免疫健康小鼠,同时设立pCI-neo载体和PBS免疫组为对照。序列分析结果显示,该基因片段含一个完整的开放性阅读框,编码144个氨基酸,与其他几个物种同源性为76.1%~86.2%,预测蛋白中含较多的α-螺旋区域,主要集中在3个区域。免疫结果显示,与对照组相比,pCI-G能够引起小鼠体内IL-4和IFN-γ持续快速的增长,在首免后第56天,二者的质量浓度可达到70.86pg/mL±4.22pg/mL和237.39pg/mL±3.17pg/mL。该质粒可增强小鼠Th2型和Th1型免疫应答,是极具应用潜力的细胞因子。  相似文献   

10.
为了确定作为疫苗的质粒DNA能否在真核细胞中表达和探讨其是否有可能和宿主DNA发生整合,基于弓形虫DNA疫苗pcDNA3.1-GRA6建立了鉴定DNA疫苗在真核细胞内表达以及其是否与宿主DNA重组的方法。以黄色荧光蛋白为标记优化DNA疫苗体外转染真核细胞的最佳条件,然后通过RT-PCR和Western-blot方法对目的蛋白GRA6的表达进行了鉴定。DNA疫苗免疫小鼠后,在不同时间点用PCR方法检测质粒DNA在体内组织样本中的分布,探讨了质粒DNA是否能与宿主DNA发生整合。结果显示,弓形虫DNA疫苗pcDNA3.1-GRA6在质粒DNA与转染试剂的比例为1∶8时体外转染效果最好,RT-PCR和Western-blot方法均证明其可以在真核细胞中表达。免疫后第28天,pcDNA3.1-GRA6免疫组小鼠的脾、肝等组织的基因组DNA样品均可扩增出GRA6基因片段;而免疫后第56天,各组织均未扩增出特异性GRA6基因片段。表明质粒DNA只能短暂存在于体内。因此,DNA疫苗重组质粒体外与体内鉴定方法的建立,为DNA疫苗开发提供了一个较为系统的研究基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号