首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isotope ratios of amphetamine type stimulants (ATS) depend as well on the precursor as the synthetic pathway. For clandestine production of amphetamine and methamphetamine, 1-phenyl-2-propanone (P2P, benzylmethylketone) is a commonly used precursor.Our aim was to determine the variation of the isotope ratios within precursor samples of one manufacturer and to compare seized samples of unknown sources to these values. δ13CV-PDB, δ2HV-SMOW and δ18OV-SMOW isotope ratios were determined using elemental analysis (EA) and gas chromatography (GC) coupled to an isotope ratio mass spectrometer (IRMS). The comparison of all seized samples to the data of the samples of one manufacturer revealed considerable differences. The results show that IRMS provides a high potential in differentiating between precursors from different manufacturers for the clandestine production of ATS and identifying corresponding sources.  相似文献   

2.
目的建立甲基苯丙胺毒品的对映异构体分析的优化方法。方法按文献方法用(S)-(+)-a-甲氧基-a-(三氟甲基)苯基乙酰氯(MTPACl)对甲基苯丙胺直接衍生化和在碱性条件下用有机溶剂萃取后再用MTPACl衍生化(对文献方法优化),分别对其衍生物采用全扫描形式进行GC-MS分析,比较其结果。结果优化方法的检测限低,峰型好,副反应少。文献方法的检测限是0.1ng,优化方法的检测限是0.001 6ng。结论优化方法用于甲基苯丙胺的对映体特征分析,结果更准确,实用性更强。  相似文献   

3.
In this study, stable isotope ratio analysis was used to track the precursor information of methamphetamine. The δ13C and δ15N values of 30 nature ephedra plants, 12 synthetic ephedrine/pseudoephedrine (ephedrine), 14 natural ephedrine, and 987 seized methamphetamine samples were measured and compared. Due to different weather and earth conditions, the δ13C and δ15N values of ephedra plants grown in the east and the west of Inner Mongolia showed great difference. The δ15N values of ephedra plants were consistent with related ephedrine extracted from them. Moreover, the criteria to infer the synthetic origin of ephedrine were set up after the analysis of natural and synthetic ephedrine samples. Finally, the precursor origins of 949 seized methamphetamine samples synthesized by Emde and Nagai method were tentatively inferred. Influenced by different preprecursors, the δ13C values of seized methamphetamine samples that synthesized from P2P also showed great difference, and this result is consistent with the reported data.  相似文献   

4.
The applicability of capillary electrophoresis (CE) with a UV detector using highly sulfated gamma-cyclodextrin as a chiral selector was examined for analysis of impurities in seized methamphetamine. Samples of methamphetamine-hydrochloride dissolved in water at a high concentration (20 mg/mL) were analyzed. Electrokinetic injection has an advantage over hydrodynamic injection for improving the detection of trace impurities. Small peaks of the precursor impurities, such as (1R,2S)-(-)-ephedrine and (1S,2S)-(+)-pseudoephedrine, were detected and quantified without extraction. The seized drugs could be classified into three groups based on the contents of the two impurities.  相似文献   

5.
Nineteen crystalline methamphetamine ('ice') seizures captured by the Australian Federal Police (AFP) at the Australian border between 1998 and 2002 were analysed. Using a modified gas chromatograph-mass spectrometry (GC-MS) impurity profiling approach of these samples we have identified >30 compounds associated with methamphetamine and/or its synthetic route. Major impurities detected include 1,2-dimethyl-3-phenylaziridine 8, dimethylamphetamine 14, N-formylmethamphetamine 24, N-acetylmethamphetamine 25, 1,3-dimethyl-2-phenylnaphthalene 32, 1-benzyl-3-methylnaphthalene 33 and methamphetamine dimer 34. These data are suggestive of ephedrine/pseudoephedrine as the main precursor of the 'ice' samples seized during 1998-2002. Additionally the two naphthalenes 32 and 33 further identified that 15 items in 9 seizures were produced via the more specific ephedrine/hydriodic acid/red phosphorus method. One sample comprised 75% dimethylamphetamine and 9.7% methamphetamine, representing the first Australian seizure of imported dimethylamphetamine reported.  相似文献   

6.
Impurity profiling and classification of seized methamphetamine may play an important role in the interpretation of analytical results, the determination of the synthetic method employed, and the criminal investigations of drug traffic routes. Our study is focused on classifying seized methamphetamine samples according to the groups sorted by the types and quantities of impurities present in illicit methamphetamine samples. The samples (100 mg) were dissolved in 2 mL of potassium phosphate buffer (pH 7.0), extracted with 200 μL of ethyl acetate under basic condition, and then analyzed by gas chromatography-mass spectrometry (GC–MS) with a DB-1 capillary column (30 m × 0.25 mm i.d., 0.25 μm). Five impurities are used as criteria for the classification of seized methamphetamine samples by Emde and Nagai method. A total of fifty-two samples of seized methamphetamine were analyzed by GC–MS and classified by five organic impurities, and then sorted into four groups, which are Nagai type, Emde Type, Undetermined I type, and Undetermined II type.  相似文献   

7.
In this study fifty samples of crystalline methamphetamine obtained from antinarcotics police of Iran seized during the year 2010 were analyzed. In order to determine the chemical characteristics of these samples, anion test, Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS) were carried out on the samples. All of the samples containing methamphetamine tested positive for chloride anion. The range of methamphetamine hydrochloride content in these samples was 33-95%. One sample out of 50 contained no methamphetamine. The fact that 1,2-dimethyl-3-phenylaziridine was the most frequently found impurity in the analyzed samples, indicates that most of the methamphetamine samples seized in Iran have been synthesized from pseudoephedrine as starting material.  相似文献   

8.
目的 分析不同案件缴获的“摇头丸”主要成分和添加物,为确定“摇头丸”的合成路线、非法来源提供依据.方法 以GC/MS检测法为主要检测方法.结果 检验的14个“摇头丸”主要成分为甲基苯丙胺和咖啡因,其中含有少量的其他杂质如麻黄碱和氯胺酮等.结论 检测的14个“摇头丸”样本其中12个含甲基苯丙胺,实为冰毒成分,1个为咖啡因均不属于摇头丸.  相似文献   

9.
Methamphetamine hydrochloride is one of the most widely used illicit drugs in the Philippines. In this study, we describe the application of cluster analysis of trace impurities in the profiling of the seized methamphetamine drug samples. Thirty milligrams of a homogenized drug sample were dissolved in 1 mL of pH 10.5 buffer solution and extracted with ethyl acetate containing three internal standards. The trace impurities were identified using gas chromatography-mass spectrometry (GC-MS) and quantified by gas chromatography with a flame ionization detector (GC-FID). Following previously reported methodologies, 30 impurity peaks were selected from the GC-FID chromatograms. The peak areas and retention times were referenced to the internal standards. The peak areas of the selected peaks were then grouped for cluster analysis. In order to check for consistency of clustering, two further cluster analyses were performed using 40 and 50 impurity peaks. Changes in clustering were observed in going from 30 to 40 impurity peaks, while analyses using 40 and 50 impurity peaks gave similar results. Thus, for the seized drug samples used in this study, cluster analysis using at least 40 impurity peaks showed better consistency of clustering as compared to analysis using 30 peaks only. Ten of the impurity peaks were identified, of which four were identified for the first time in methamphetamine drug samples. These are p-bromotoluene, N-benzyl amphetamine, N-ethyl amphetamine, and N-ethyl methamphetamine. The presence of phenyl-2-propanone (P2P), N,N-dimethyl amphetamine, and N-formyl amphetamine is indicative that these casework samples were synthesized using the Leuckart method.  相似文献   

10.
Synchrotron radiation total reflection X-ray fluorescence spectroscopy (SR-TXRF) was utilized to analyze various trace elements in small amounts of drugs of abuse. Sample amounts of 1 microL solutions containing 10 microg of drugs (methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine, cocaine, and heroin) were spotted on silicon wafers for direct analysis. In addition, a leaflet of marijuana was set directly on a silicon wafer, and opium in the form of a soft lump was smeared on another silicon wafer for analysis. In these experiments, about 10 pg of contaminant elements could be detected. For example, in a seized methamphetamine sample, iodine was found, which could be indicative of synthetic route. In seized 3,4-methylenedioxymethamphetamine samples, variable amounts of phosphorus, calcium, sulfur, and potassium were found, which could not be detected in a control 3,4-methylenedioxymethamphetamine sample. For marijuana and opium, two spectral patterns were obtained that were far different from each other and could be easily discriminated. Using SR-TXRF, pg amounts of each trace element in 10 microg of various drugs can be easily detected, which is not the case either for a standard TXRF experimental system or for other elemental analysis techniques.  相似文献   

11.
The headspace profiles of eleven methamphetamine (MA) samples have been analyzed using solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS). Nine of the eleven are illicit MA seizures from the Southwest U.S. border. One sample is methamphetamine base synthesized in the Drug Enforcement Administration (DEA) Southwest Laboratory, and the remaining sample is pharmaceutical-grade methamphetamine hydrochloride that is used to make training aids for drug detecting canines. In addition. volatiles associated with 1-phenyl-2-propanone (P2P), a methamphetamine precursor, have been identified for comparison with those found in methamphetamine seizure and the two reference samples. Eighty-seven different compounds were identified from all the samples, not including simple hydrocarbons and aldehydes. Only seven occur consistently in all seizure samples, and these are: acetic acid, benzaldehyde, acetophenone, P2P, 1-phenyl-1,2-propanedione (P12P), 3-phenyl-3-buten-2-one, 1-chloro-1-phenyl-2-propanone. Dimethyl sulfone, a common cutting agent in methamphetamine. was found in six of the nine seizure materials. When the reference methamphetamine and P2P samples are included, only two compounds are common to all twelve samples, and these are benzaldehyde and P2P. As such, these two compounds are likely candidates for use in a pseudomethamphetamine (PM) formulation, and their effectiveness in eliciting a canine response is being evaluated before actual deployment.  相似文献   

12.
A simple and rapid method for direct simultaneous determination of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxy-N-ethylamphetamine (MDEA) and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in seized tablets was developed using gas chromatography with flame ionization detection. Separation of all six underivatized amphetamines, including diphenylamine as internal standard, was performed in about 6 min, using SPB-50 capillary column. Amphetamine and methamphetamine eluted with negligible tailing while the other amphetamines had highly symmetrical peaks. Sensitivity per component on-column was in the nanogram range, and reproducibility from 2.6 to 6.6% at low concentration (2.4 microg/mL) and from 1.2 to 2.6% at high (70 microg/mL) concentration. The method has a wide linear range, from Limit of detection (LOD) to almost 200 microg/mL, thus allowing analysis of different samples across a wide range of possible concentrations of amphetamines. This simple, fast and precise method using gas chromatography--flame ionization detector (GC--FID), in conjunction with other methods (TLC, IR, HPLC), can be used for identification of amphetamines and direct determination in seized tablets, especially in laboratories with heavy workload.  相似文献   

13.
Impurity profiles of methamphetamine tablets seized in Thailand have been investigated. The samples are extracted with small amounts of ethyl acetate under alkaline condition and the extracts are analyzed by capillary gas chromatography. Nine compounds (1,2-dimethyl-3-phenylaziridine, ephedrine, methylephedrine, N-formylmethamphetamine, N-acetylmethamphetamine, N-formylephedrine, N-acetylephedrine, N,O-diacetylephedrie, methamphetamine dimer) are identified as impurities in methamphetamine tablet. Caffeine and ethyl vanillin are also detected as diluents and/or adulterants, and acetylcodeine monoacetylmorphine and diacetylmorphine are contained in many samples. In addition, trans-3,4-dimethyl-5-phenyl-2-oxazolidone is newly found as an impurity. For characterization and comparison of methamphetamine tablet exhibits, intensely and commonly detectable nine peaks are selected as the factor for multivariate analysis. The procedures reported here permit classification of 250 analyzed exhibits into five groups and characterization of classified groups.  相似文献   

14.
Illicit drugs manufactured from clandestine laboratories are often impure due to poor laboratory conditions, variations in synthesis and impure starting materials extracted either from common household products or pharmaceutical grade chemicals. Inductively coupled plasma mass spectrometry (ICPMS) can be utilised as a multi-element analytical tool to elicit the inorganic impurities which may be present in such samples, however the interpretation of the resultant data can be problematic and complex. This is particularly true when dealing with seized samples of unknown provenance. In this work, we have presented and interpreted inorganic profiles as a means to explore within and between batch variations in known provenance samples produced via two different popular synthetic routes. Samples were prepared from essential chemicals recovered from household materials and pharmaceutical medication available in the UK and extracted using different solvents. The presence or absence of elements in the final synthesised products could be linked to the synthesis route, salting out method and potentially the solvent used in the precursor extraction process.  相似文献   

15.
A rapid, accurate, precise, reproducible, economical, and environmentally gentle method using capillary electrophoresis (CE) is presented for the routine analysis of methamphetamine, amphetamine, MDA, MDMA, MDEA, and cocaine in seized drugs. The methodology uses a 32 cm by 50 microm capillary (length to detector 23.5 cm) with a commercially available buffer kit and diode array UV detection. Dynamic coating of the capillary surface is accomplished by flushing with base for 1 min, a proprietary polycation for 1 min, and then a proprietary polyanion for 2 min. This approach provides a relatively high and stable electroosmotic flow (EOF), even at low pHs. The background electrolyte (BGE) contains 75 mM phosphate buffer (pH 2.5) with the same polyanion as above. Using this methodology, amphetamine, methamphetamine, MDA, MDMA, MDEA, and an internal standard (n-butylamphetamine) are baseline resolved in less than 5 min. The run-to-run migration time %RSDs and peak area %RSDs are typically <0.3% and <2.1%, respectively. The day-to-day and capillary-to-capillary migration time %RSDs are <1.5% and <2.1%, respectively. The %RSDs of the relative migration times compared with the internal standard on a day-to-day and capillary-to-capillary basis are <0.2% and <0.06%, respectively. The linear dynamic range using peak areas range from 0.003 to 0.10 mg/mL. The correlation coefficients are >0.9998, with all calibration curves passing at or near the origin. Similar data are obtained for cocaine and its internal standard henyltoloxamine. None of the compounds usually encountered in illicit samples interfere with the target compound (e.g., methamphetamine and cocaine) or the internal standard. Quantitative results for synthetic mixtures and seized exhibits are in good agreement with actual values, and also with results obtained from other techniques. The relatively high EOF for the dynamically coated capillary system allows for the screening of basic, acidic, and neutral adulterants in drug seizures; identification is facilitated by the use of automated UV library searches.  相似文献   

16.
Potassium permanganate is used for the production of cocaine and methylcathinone. The third convention of the UN against narcotic drugs (1988) contains a list of so-called precursors, substances commonly used for the production of narcotic drugs. The control of the precursors can be a very important step to prevent the illicit production of narcotic substances. A chemical characterization of a seized product may contribute to determine the origin of the producing company and the trade channels and to prevent further illicit deliveries. 31 samples of permanganate (19 authentic and 12 seized samples) have been analyzed for 9 metallic elements. Detailed procedures for the emission spectrography and ICP-analysis are given and the range of concentrations is tabulated. It was surprising that no significant concentrations of metals like chromium, nickel or cobalt were present. Nor was the difference between the technical and analytically pure products sufficient to make a differentiation according to origin. This is probably attributable to the technical manufacture of permanganate by electrolysis. All the statistical analyses of the results performed on the available data do not allow conclusions as to the country of origin or manufacturer, as production batches of one and the same manufacturer may also show differences. Only the morphology of the product (crystals, powder or "free flowing") allows a certain characterization. Nevertheless it seems necessary to analyze all seized samples for impurities and to establish a table of "impurity profiling" in the future in order to receive more information and to find correlations in selected cases.  相似文献   

17.
The following report summarizes a study performed on seized drug exhibits collected in two U.S. states to evaluate the presence and identification of cutting agents. Aliquots of seized drug materials from Kentucky (n = 200) and Vermont (n = 315) were prepared using a dilute‐and‐shoot procedure. Initial analysis was performed using gas chromatography–mass spectrometry (GC‐MS) followed by analysis using liquid chromatography quadrupole time‐of‐flight mass spectrometry (LC‐QTOF). Active compounds detected overall included caffeine (31.0%), quinine/quinidine (24.7%), levamisole (11.6%), acetaminophen, (8.2%) and procaine (8.2%). These compounds were found with several drugs of abuse, such as heroin, fentanyl, methamphetamine, and cocaine. This novel information about cutting agents used to dilute or alter drugs of abuse is important to criminal investigations and in the management of acute intoxications at health centers. However, common methodologies for analysis and standard reporting practices frequently do not include cutting agents, resulting in lacking or inadequate information regarding prevalence of these substances.  相似文献   

18.
Classification of seized methamphetamine by impurity profiling can provide very useful information in criminal investigations of drug traffic routes, sources of supply and relationships between seizures. The aim of this study is to improve and develop an analytical method for detecting impurities such as starting materials and by-products in illegally prepared methamphetamine.HCl samples. A 50mg sample of methamphetamine.HCl was dissolved in 1 ml of buffer solution (four parts 0.1M phosphate buffer pH 7.0 and one part 10% Na2CO3). Impurities were extracted with 0.5 ml of ethyl acetate containing four internal standards (ISs) (n-decane, n-pentadecane, n-nonadecane and n-hexacosane) and analyzed by gas chromatography (GC) using a flame ionization detector (FID) on a DB-5 capillary column (0.32 mmi.d. x 30 m, film thickness 1.0 microm). The use of a middle-bore column offered better separation of the impurity peaks. The correction of the retention times of impurity peaks with four ISs made peak identification very accurate for subsequent data processing. Twenty-four characteristic peaks were selected for comparison and similarity and/or dissimilarity between samples, and the data were evaluated by the Euclidean distance of the relative peak areas after logarithmic transformation. The results indicate that the present method would be useful for methamphetamine impurity profiling.  相似文献   

19.
Gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) are commonly used for the impurity profiling of illegal drugs. For the impurity profiling of methamphetamine, it is very important to obtain information about impurities related to the manufacturing route and the precursor chemicals [B. Remberg, A.H. Stead, Drug characterization/impurity profiling, with special focus on methamphetamine: recent work of the United Nations International Drug Control Programme, Bull. Narcotics LI (1999) 97-117 ]. There are many artifact impurities arising from the preparation of samples and conditions of GC. Moreover, some impurities pose a barrier to the statistical processing of methamphetamine profiling. We investigated capillary GC analysis using pulsed splitless (PS/L) injection to minimize the thermal decomposition of impurities at the injection port and improve the transfer of samples into the column. We confirmed that the optimal conditions of PS/L-mode are 230 degrees C (injection temperature), 50 psi (pulsed pressure) and 1.1 min (pulsed time) for the methamphetamine profiling. Based on the impurity profiles of 48 methamphetamine crystals in PS/L-mode, we can achieve very easy handling and obtained, good results.  相似文献   

20.
The consumption of synthetic drugs, generally known as designer drugs, has increased drastically in all parts of the world. Typical constituents of designer synthetic drugs are chemical substances derived from amphetamine but significant differences in effects caused and duration may result. In May, 2005, the civil state police of Sao Paulo seized thirty-one gelatinous capsules containing a very small quantity of a white powder inside (approximately 1.5 mg per capsule). This paper describes the analytical assays that were used to identify the seized material. Preliminary assays using colorimetric tests and high performance thin-layer chromatography indicated that the capsules content could be an amphetamine derivative. In the capillary zone electrophoresis assay, it was possible to observe that the analyzed material had basic characteristics. Mass spectrometry analysis revealed that the compound had the same molecular mass as 2,5-dimethoxy-4-bromoamphetamine (DOB) and its identity was confirmed through collision-induced dissociation (CID) experiments. Finally, the comparison of infrared sample spectrum with a spectra library provided further evidence of the DOB presence in the seized material. Although a reference standard material was not available, the information gathered from the different assays allowed the conclusion that the substance was, in fact, DOB, a substance with a powerful hallucinogenic action of proscribed use in the country and which was seized and identified for the first time in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号