首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 27-year-old man was carrying in his digestive tract 99 packages each containing about 10 g of a 86% cocaine powder. The courier died by acute cocaine intoxication due to inflation and rupture of four packages during a flight from Bogotá to Rome. At the autopsy, the external examination was unremarkable. The internal examination showed edema and generalized congestion of the organs. Toxicological analyses were performed by gas chromatography-mass spectrometry after solid phase extraction using Bond Elut Certify columns and derivatization with BSTFA/TMCS. High levels of cocaine and benzoylecgonine were found in blood (4.0 microg/mL and 17.0 microg/mL), urine (152.0 microg/mL and 512.0 microg/mL), bile (99.8 microg/mL and 54.0 microg/mL), vitreous humor (7.1 microg/mL and 5.8 microg/mL), brain (7.5 microg/mL and 3.5 microg/mL), and hair (55.5 ng/mg and 27.7 ng/mg). The presence of the cocaine and its metabolite in the hair suggested that the man was a cocaine user.  相似文献   

2.
High performance liquid chromatography with diode array detection (HPLC-DAD) was used to develop a method for the simultaneous determination of morphine, codeine, 6-acetylmorphine (6AM), cocaine, benzoylecgonine (BEG), cocaethylene, methadone and its metabolite, 2-ethylidene-1,5-dimethyldiphenylpyrrolidine (EDDP), in plasma. Following solid-phase extraction with Bond Elut Certify cartridges, chromatography was performed on an X-Terra RP8 column (250 mm x 4.6 mm i.d., 5 microm particle size), using acetonitrile-phosphate buffer pH 6.53 as mobile phase and elution in the gradient mode. The detector response was linear at concentrations over the range 0.1-10 microg/mL in plasma, and the correlation coefficients for the eight drugs studied were all higher than 0.99. The average extraction recoveries from plasma ranged from 60% for BEG to 95% for methadone. The precision was acceptable, with coefficients of variation oscillating between 2.55% and 6.45%. The accuracy was found to be within satisfactory limits (+/- 8.1%). Finally, the method was applied to 21 plasma samples from fatal overdoses, obtaining positive results for two or more drugs.  相似文献   

3.
The coingestion of cocaine (COC) and ethanol is a very frequent occurrence and is known to increase the risk of morbidity and mortality. The formation occurs of a transesterification product, the cocaethylene (CE), which is even more toxic than cocaine. In order to study the role of ethanol as an agent of interaction in lethal cocaine intoxication, and to establish its influence in post mortem cocaine concentrations, an ion-trap gas chromatographic-mass spectrometric method (GC-MS) was validated to quantify simultaneously the agent and its biotransformation products, benzoylecgonine (BE), ecgoninemethylester (EME) and the 'biomarker' of the interaction, the CE present in whole blood. Deuterated internal standards were added to 2 ml of post mortem whole blood and extracted in Bond Elut Certify columns. The residues were evaporated and derivatized with N-methyl-N-t-butyldimethylsilyltrifluoroacetamide (MTBSTFA). Detection was performed by electron impact ionization. The monitored ions were m/z 82/85 for EME-tert-butyldimethylsilyl (TBDMS)/EME-d3-TBDMS; m/z 182/185 for COC/COC-d3; m/z 196/199 for CE/CE-d3 and m/z 282/285 for BE-TBDMS/BE-d3-TBDMS. The limits of detection and quantification were found to be 25 ng and 50 ng ml(-1), respectively, for COC and CE, and 50 and 100 ng ml(-1) for BE and EME. Accuracy was different for each of the compounds, varying from 65 to 98%. The dynamic range of the assay was 50-2000 ng ml(-1).  相似文献   

4.
The post mortem redistribution of ten commonly prescribed antipsychotic drugs (APs) was investigated. Femoral blood was collected from 273 cases at admission to mortuary (AD) and at post-mortem (PM). The PM samples were collected at various times up to nine days after admission and the sample pairs analysed using LC-MS/MS. The drugs included in this study were 9OH-risperidone (paliperidone), amisulpride, chlorpromazine, clozapine, haloperidol, olanzapine, promethazine, quetiapine, risperidone, and zuclopenthixol. Haloperidol, quetiapine and risperidone showed minimal changes between AD and PM specimens, whereas the majority of drugs showed significant changes between the sample pairs collected at different time points post mortem (p<0.01) in addition to an average concentration change greater than the uncertainty of measurement of the applied method. Average increases in blood concentrations after admission to the mortuary ranged up to 112% (chlorpromazine and olanzapine) but also decreases up to -43% (9OH-risperidone) were seen. There were large standard deviations between sample pairs and substantial day-to-day unpredictable changes that highlight the difficulty in the interpretation of drug concentrations post-mortem. Based on the presented data, we recommend that specimens for toxicological analysis should to be taken as soon as possible after admission of a deceased person to the mortuary in order to minimise the effects of the PM interval on the drug concentration in blood.  相似文献   

5.
This method for the determination of haloperidol (HAL) in plasma is based on high-performance liquid chromatography (HPLC) with a reversed-phase column, ODS-C18. HAL is rapidly extracted from human plasma by using Bond Elut C18 cartridge and its recovery is over 90%. The mobile phase is a mixture of 1% acetate/acetonitrile/tetrahydrofuran/triethylamine (69.5: 28.2:1.9:0.4, by vol.). The method is rapid, simple and free from intereferences and gives good precision.  相似文献   

6.
A single-column solid-phase extraction procedure was developed for the screening of acidic, neutral, and basic drugs from plasma. The recoveries of all 25 tested drugs exceeded 82%. After the plasma had been diluted with phosphate buffer (pH 6.0), the drugs were extracted using a single Bond Elut Certify column. The acidic and most of the neutral drugs were eluted by acetone/chloroform (1:1) and the basic drugs were eluted by 2% ammoniated ethyl acetate. Some neutral drugs appeared in both fractions. The two fractions were collected separately and evaporated until approximately 100 microL of solvent remained in the tube. Both fractions were analyzed separately on a gas chromatograph equipped with a wide-bore capillary column and a flame ionization detector. The procedure could also be used for urine samples.  相似文献   

7.
Morphine and codeine were isolated from blood with C18 Bond Elut columns and derivatised with pentafluoropropionic anhydride (PFPA). The PFPA-derivatives were examined by means of gas chromatography/mass spectrometry using electron impact and chemical ionisation (positive and negative mode). The negative chemical ionisation, as most sensitive, was applied for the quantitation of both examined substances in forensic blood samples.  相似文献   

8.
A qualitative and quantitative analytical method was developed and validated for the determination of 49 licit and illicit drugs in oral fluid. Small oral fluid samples, volume 1mL, were collected from volunteers using a modified Omni-Sal device and the analytes were extracted from an oral fluid/buffer mixture using a single Bond Elut Certify solid phase extraction cartridge. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) and gas chromatography-repetitive full scan mass spectrometry (GC-MS) were used in parallel to analyze the extracts for the targeted drugs. Extracts were analyzed by GC-MS in their underivatized form and as their pentafluoropropionyl derivatives. Deuterated internal standards were used for quantification of drugs of abuse by LC-MS-MS to minimize matrix effects. Methadone-d(9) and tumoxetine were used as the internal standards for quantification of non-derivatized and derivatized analytes respectively by GC-MS. Linearity was demonstrated over the range 5-200 ng/mL and limits of detection were less than 4 ng/mL for each drug analyzed. The method demonstrated acceptable recoveries for most of the analytes and good intra- and inter-day precision. Acquisition of data by repetitive full scan GC-MS allows the addition of further analytes to the target menu.  相似文献   

9.
A case history of a 31-year-old male schizophrenic patient is presented. The man was treated with olanzapine for three weeks before he died. After one week on a 10 mg daily dose of olanzapine, his fasting blood glucose was elevated to 11.3 mmol/L (203 mg/dL). In order to treat more aggressively his psychosis, the olanzapine dose was raised to 20 mg daily resulting in his fasting blood glucose climbing to 15.8 mmol/l (284 mg/dL). On the days preceding his death, he became progressively weaker, and developed polydipsia with polyuria. He had no personal or family history of diabetes mellitus and he was on no other medication at the time of his death. Postmortem blood, vitreous humor, and urine glucose concentrations were 53 mmol/L (954 mg/dL), 49 mmol/L (882 mg/dL), and 329 mmol/L (5922 mg/dL), respectively. Drug screen on urine and blood indicated only a small amount or olanzapine and no alcohols. Peripheral blood olanzapine concentration was within therapeutic limits, 45 ng/mL. Analysis of vitreous humor and urine revealed severe dehydration with small amounts of ketones. Death was attributed to hyperosmolar nonketotic diabetic coma, and olanzapine was felt most likely to be the cause. Another atypical neuroleptic, clozapine, has also been associated with the development and exacerbation of diabetes mellitus or diabetic ketoacidosis. We recommend including vitreous glucose and beta-hydroxybutyrate analysis as part of postmortem toxicology work up when the drug screen reveals the presence of either olanzapine or clozapine.  相似文献   

10.
The presence of therapeutic drugs and their metabolites in the hair of psychiatric patients was investigated using gas chromatography (GC)-mass spectroscopy (MS)-electron ionization (EI) and GC-MS-chemical ionization (CI). In hair samples tested from 35 subjects, carbamazepine, amitriptyline, doxepin, trihexyphenidyl, chlorpromazine, chlorprothixene, trifluoperazine, clozapine and haloperidol were detected, with maximal concentrations of 22.5, 57.7, 183.3, 15.6, 68.2, 30.0, 36.8, 59.2 and 20.1 ng/mg of hair sample, respectively. Chlorpromazine and clozapine concentrations in the hair were found to be dependent on the dosage used and their correlation coefficients were 0.8047 (P<0.001, n=16) and 0.7097 (P<0.001, n=16), respectively. Segmental analysis demonstrated that there was a correlation between the history of subject's drug exposure and the distribution of drug along the hair shaft. Our results also show that drug analysis in hair may provide useful information about drug treatment and the history of usage, and that drugs can be detected in normally kept hair for at least 16 months after intake.  相似文献   

11.
The aim of this study was to evaluate the performance of a technique for the simultaneous testing of opiates, cocaine and metabolites in hair by interlaboratory comparison. Sixteen forensic and clinical laboratories with different degrees of experience in hair analysis participated voluntarily in the study (no selection criteria were applied). The suggested analytical procedure, the one routinely used in our laboratory, consisted of incubation in HCl 0.1N (45 degrees C, overnight), solid phase extraction (with Bond Elut Certify) cartridges), derivatisation (trimethylsilyl (TMS) derivatives) and GC-MS analysis. Three different mixtures of finely cut (1 mm or less) hair were prepared using drug-users' and drug-free hair: one 'negative' sample (<0.1 ng/mg for morphine, 6-acetylmorphine (6AM), cocaine and benzoylecgonine (BE)), one 'low concentration' sample (between 0.5 and 2 ng/mg) and one 'high concentration' sample (>3 ng/mg). Accuracy and precision (CV% lower than 5.1, 9.9, 5.2, 3.8, 7.3 and 8.3% for morphine, 6AM, codeine, cocaine, BE, and methylecgonine (ME), respectively; range 0.5-5 ng/mg) of the method and homogeneity of the mixtures were evaluated in our laboratory by intraday (CV% lower than 12% for all analytes) and interday analyses (CV% lower than 17% for all analytes except 6AM, 25%). Participants in the study were grouped into: (1) laboratories (n = 6) obtaining the best qualitative and quantitative values, corresponding to those with long experience in hair analysis; (2) laboratories (n = 5) with no reported false positive and/or false negatives; (3) laboratories (n = 5) with one or more reported false positives/false negatives. The results obtained by the labs of the first group were used as reference values. The scatter of data was similar to those obtained in other published studies.  相似文献   

12.
目的建立GC—MS同时测定血液中苯海索、氯丙嗪和氯氮平的方法。方法血液中加入内标SKFszs。.在pH〉10条件下用V(苯):v(乙酸乙酯)=1:l提取,用GC—MS全扫描法进行定性检测:以地西泮一d;为内标,样品在pH〉10条件下用V(苯):v(乙酸乙酯)=l:1提取,用GC—MS选择离子监测方法进行定量检测.结果苯海索、氯丙嗪和氯氮平在20~10000ng/mL范围内呈线性关系,最小检测限分别为0.3、0.3和0.7n幽L(信噪比≥3),方法回收率为79.9%~85.5%,日内、日间精密度均小于5.1%。结论本方法可同时分析血液中苯海索、氯丙嗪和氯氮平,方法灵敏度高、快速、操作简便,适用于苯海索、氯丙嗪和氯氮平的血药浓度监测和急性中喜案件竹枪测  相似文献   

13.
A simple and rapid method for the extraction of four diazine herbicides (terbacil, bromacil, norflurazon and PAC) from human whole blood, plasma and urine with use of Bond Elut C18 cartridges is presented. Whole blood, plasma and urine samples containing the herbicides, after mixing with distilled water, were loaded on Bond Elut C18 cartridges and the herbicides were eluted with chloroform/methanol (9:1). They were detected by capillary gas chromatography with flame ionization detection (FID) with splitless injection. Separation of the four diazine herbicides from each other and from impurities was generally satisfactory with the use of an intermediately polar DB-17 capillary column. The recovery of all compounds, which had been added to whole blood, plasma and urine, was > 89%. The calibration curve for the herbicides, which has been added to whole blood, plasma and urine, showed linearity in the range 1.6–100 ng on column. Their detection limits were 1.2–1.4 ng on column for whole blood and plasma, and 1.1–1.2 ng on column for urine.  相似文献   

14.
腐败生物检材中多种碱性滥用药物的检测   总被引:1,自引:1,他引:0  
目的建立腐败生物检材中多种碱性滥用药物的提取、净化和仪器分析方法。方法用环己烷作为提取溶剂液-液萃取,同时采用Bond Elut Certify小柱、甲醇淋洗、二氯甲烷:异丙醇:氨水(78:20:2)洗脱固相萃取分离提取,GC/MS、GC/NPD定性定量分析各种生物检材中的滥用药物。结果从所送死者肝组织、胃组织、心血及胃内容、尿样、各检材中均同时检出吗啡、可待因、舒乐安定和异丙嗪成份,其中肝组织含量分别为吗啡0.094μg/g、可待因0.257μg/g、异丙嗪0.110μg/g,尿液含量分别为吗啡0.334μg/ml、可待因4.054μg/ml、异丙嗪0.066μg/ml,心血含量分别为吗啡0.036μg/ml、可待因0.106μg/g、异丙嗪0.088μg/ml。结论此方法准确、可靠、科学,可以用于法医毒物分析领域体内检材多种碱性药物的检测。  相似文献   

15.
A rapid and efficient procedure is described for the extraction and analysis of oxazepam, the major urinary metabolite of diazepam in greyhounds. Urine was extracted by passing through a bonded silica column (Bond Elut) following enzyme hydrolysis. The adsorbed drug was eluted and then detected and measured by high performance liquid chromatography (HPLC). Recoveries were in excess of 85% at 50 ng/ml concentrations. Detection was possible up to 30 h after a single oral dose of diazepam (5 mg).  相似文献   

16.
Olanzapine is an antipsychotic drug that has been on the market since 1996. Olanzapine-related deaths are very rare; the literature reports only one. However, in a recent 5-month period one medical examiner's office found two such cases that are reported in this paper. One is a suicide and the other is not. The toxicologic and anatomic findings for each are described. Blood olanzapine concentrations ranged from 0.237 microg/ml for one to 0.675 microg/ml for the other. Gastric content concentrations also exhibited a wide range, varying from 0.197 microg/ml to 17.400 microg/ml for the other. Distribution studies of the liver, kidney, and brain produced nondetectable concentrations for the drug. There were no consistent pathologic anatomic findings for cause of death except for moderate coronary atherosclerosis in the nonsuicide case. Both deaths were attributed to olanzapine toxicity.  相似文献   

17.
A rapid and effective solid-phase extraction procedure using Bond Elute Certify bonded silica sorbent cartridges was adopted to extract amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA or Ecstasy) from urine samples. The extract was derivatized with trichloroacetic anhydride prior to gas chromatography/mass spectrometry (GC/MS) analysis with selected ion monitoring of the following ions: 190, 91, 188; 204, 91, 202; 162, 135, 202; 194, 123; and 211, 209 for the derivatized amphetamine, methamphetamine, MDMA, d5-amphetamine, and d9-methamphetamine, respectively. The first of the ions listed for each compound was used for quantitation. The compound d5-amphetamine was used as the internal standard for amphetamine, and d9-methamphetamine was used for methamphetamine and MDMA. Results showed a higher than 65% recovery and a reproducibility with less than a 5% coefficient of variation. When a sample size of 2 mL was used, the lowest detectable concentration was about 50 ng/mL, and a near-perfect fit can be obtained (within the 250 to 4000-ng/mL concentration range studied) using a second-order polynomial model.  相似文献   

18.
OBJECTIVE: Toxicological analyses are often performed to investigate suspected poisoning, but the interpretation of results may not be straightforward. We studied suspected poisoning cases 1992-2003 where blood clozapine and N-desmethylclozapine (norclozapine) were measured in order to assess the relationship of these parameters to outcome. METHODS: Samples were referred from clinicians, pathologists/coroners, or via the Clozaril Patient Monitoring Service (CPMS, Novartis). Information was gathered from clinical, post-mortem, or coroners' reports. RESULTS: There were seven fatal [five male, two female; median (range) age 28 (24-41) year] and five non-fatal [four male, one female; median age 35 (26-41) year] clozapine overdoses. The median post-mortem blood clozapine and norclozapine concentrations were 8.2 (3.7-12) and 1.9 (1.4-2.4)mg/L, respectively [median clozapine:norclozapine ratio 4.4 (2.9-5.1)]. The median plasma clozapine and norclozapine concentrations (first or only sample) were 3.9 (1.7-7.0) and 0.40 (0.30-0.70)mg/L, respectively [median clozapine:norclozapine ratio 7.6 (5.3-18)] in the remainder. These overdoses were in patients who were poorly or non-adherent to clozapine, or who had taken tablets prescribed for someone else. In 54 further people who died whilst receiving clozapine [38 male, 16 female; median age 41 (22-70) year], the median post-mortem blood clozapine and norclozapine concentrations were 1.9 (0-7.7, n = 43) and 1.4 (0-6.0, n = 39)mg/L, respectively [median clozapine:norclozapine ratio 1.5 (0.4-7.6, n = 38)]. The median post-mortem increase in blood clozapine and norclozapine as compared to the most recent ante-mortem measurement was 489 (98-5,350)% and 371 (139-831)%, respectively [median sample time before death 14 (0-30, n = 21) days]. CONCLUSION: Clozapine poisoning cannot be diagnosed on the basis of blood clozapine and norclozapine concentrations alone. The analysis of ante-mortem blood specimens collected originally for white cell count monitoring and the blood clozapine:norclozapine ratio may provide additional interpretative information.  相似文献   

19.
Clozapine is a uniquely effective antipsychotic, but is very toxic in clozapine-na?ve subjects. A 34-year-old male patient in a mental health facility, who was not prescribed clozapine, took 350 mg clozapine obtained from another patient at night. He was found dead the next morning. The presence of cardiomegaly related to obesity may have increased the risk of suffering an acute cardiac event after ingestion of clozapine. The medication prescribed to the patient was not thought to have contributed to the fatal outcome. Post mortem femoral blood clozapine and norclozapine concentrations were 0.48 and 0.20mg/L, respectively. By way of comparison, audit of 104,127 plasma samples (26,796 patients) assayed for therapeutic drug monitoring purposes 1993-2007, showed plasma clozapine 0.35 mg/L or more in 57.5% samples (8.4% 1mg/L or more). Those involved in the investigation of clozapine-associated deaths need to be aware that that death in an adult may occur after a single 'therapeutic' dose. A diagnosis of fatal clozapine poisoning cannot be made solely on the basis of a post mortem blood clozapine measurement.  相似文献   

20.
An analytical method using solid-phase extraction (SPE) and high-performance liquid chromatography-mass spectrometry (LC-MS) has been developed and validated for the confirmation of Delta(9)-tetrahydrocannabinol (THC) in oral fluid samples. Oral fluid was extracted using Bond Elut LRC-Certify solid-phase extraction columns (10 cm(3), 300 mg) and elution performed with n-hexane/ethyl acetate. Quantitation made use of the selected ion-recording mode (SIR) using the most abundant characteristic ion [THC+H(+)], m/z 315.31 and the fragment ion, m/z 193.13 for confirmation, and m/z 318.00 for the protonated internal standard, [d(3)-THC+H(+)]. The method proved to be precise for THC, in terms of both intra-day and inter-day analyses, with coefficients of variation less than 10%, and the calculated extraction efficiencies for THC ranged from 76 to 83%. Calibration standards spiked with THC between 2 and 100 ng/mL showed a linear relationship (r(2)=0.999). The method presented was applied to the oral fluid samples taken from the volunteers during the largest music event in Portugal, named Rock in Rio-Lisboa. Oral fluid was collected from 40 persons by expectoration and with Salivette. In 55% of the samples obtained by expectorating, THC was detected with concentration ranges from 1033 to 6552 ng/mL and in 45% of cases THC was detected at concentrations between 51 and 937 ng/mL. However, using Salivette collection, 26 of the 40 cases had an undetectable THC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号