首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
目的研究固相微萃取(SPME)用于尿中苯丙胺(AMP)、甲基苯丙胺(MET)、3,4-亚甲二氧基苯丙胺(MDA)和3,4-亚甲二氧基甲基苯丙胺(MDMA)的提取。方法样品调节至碱性和用盐饱和后用顶空SPME,内标为MET-d5。萃取纤维为100μm聚二甲基硅氧烷(PDMS)。用气质联用选择离子检测(GC/MS/SIM)。结果0.2μg/ml加标尿样,AMP、MET、MDA和MDMA的富集倍数分别为22,60,13和47。检出限(S/N=3)为0.4~9.5ng/ml。线性范围为0.05~1μg/ml。0.2、0.5和1.0μg/ml加标尿样,相对回收率77.9%~112.4%,变异系数2.7%~18.0%(n=5)。用该方法分析5个案件样品,和常规液液萃取结果接近。结论顶空SPME法用于尿中AMP、MET、MDA和MDMA等化合物的分析,无需有机溶剂,富集效率高,提取-富集-进样一体化,简单方便实用。  相似文献   

2.
血中十六种挥发性碳氢化合物的固相微萃取   总被引:1,自引:0,他引:1  
为认定火灾现场烧死尸体 ,用固相微萃取技术从血中快速提取十六种碳氢化合物 (直链烃从八碳到十三碳 ,芳香烃从二甲苯异构体到三甲基苯 )。在室温条件下直接用 10 0 μm 聚二甲基硅氧烷萃取头以顶空方式萃取浓缩2 0min。气相色谱仪 ,氢火焰检测器测定 ,外标法定量。结果显示 :血中检测浓度可达 0 1μg/ml。固相微萃取是筛选血中碳氢化合物一种灵敏而准确的方法。  相似文献   

3.
血中苯酚及甲酚的固相萃取-GC/MS分析   总被引:1,自引:0,他引:1  
用固相萃取-GC/MS对人血中的酚和甲酚进行定性和定量分析。采用GDX403对分析物和邻氯酚(内标)进行固相萃取,并采集总离子流色谱。根据分析物在血中的浓度,通过总离子流色谱峰的质谱和保留时间或特征离子质量色谱峰保留时间进行定性分析。实验采用特征离子质量色谱进行定量分析,线性范围0.02~10μg/ml。本方法检测限为10ng/ml,CV%为2.11~4.20%,分析物和内标的萃取率为68.6~89.5%,血中添加测定回收率为97.8~104%。本法测定健康人血中苯酚含量为2.2±0.4μg/ml.  相似文献   

4.
GC法检测血液和尿液中甲基苯丙胺和咖啡因   总被引:1,自引:1,他引:0  
目的建立同时测定血、尿中甲基苯丙胺和咖啡因含量的方法。方法应用GC/NPD技术,以4-苯基丁胺为内标,直接碱化,用氯仿提取,三氟乙酸酐衍生化,8CB熔融石英毛细管柱(30m×0.25mm×0.25μm)分析。结果生物样品中甲基苯丙胺与咖啡因在0.012—7.5μg/mL浓度范围内线性关系良好,检测限(S/N=3)依次为1.2ng/mL,0.6ng/mL(血);1.6ng/mL,0.8ng/mL(尿)。苯丙胺在0.017—10.0μg/mL浓度范围内线性关系良好,检测限为1.6mg/mL(血),3.2ng/mL(尿)。所有样本回收率均大于85%。结论本方法准确、灵敏,适用于血、尿中甲基苯丙胺及其代谢物苯丙胺的三氟乙酸酐衍生化物和咖啡因的同时检测,为判定滥用毒品种类、追查毒品来源以及研究生物体内甲基苯丙胺和咖啡因的交互影响提供了检测手段。  相似文献   

5.
姜宴  沈敏  赵子琴 《法医学杂志》2002,18(4):252-255
对近几年国内外22篇有关生物检材中甲基苯丙胺及苯丙胺测定的文献进行了综述。介绍了血、尿、毛发等生物检材的收集与预处理方法,比较了生物检材中甲基苯丙胺及苯丙胺的液-液萃取(LLE)、固相萃取(SPE)、固相微萃取(SPME)和顶空固相微萃取(HS-SPME)等提取方法,以及内标的选取、不同的衍生化方法和包括免疫、GC/MS、GC/NPD、GC/ECD、GC/FID、HPLC、HPCE在内的各种检测方法。最后,对分析结果的评定进行了讨论。  相似文献   

6.
《中国法医学杂志》2019,(3):252-256
目的采用电场促进下的固相微萃取(EE-SPME)-GC/MS分析方法,对尿中苯丙胺(AM)、甲基苯丙胺(MA)、3,4-(亚甲二氧基)苯丙胺(MDA)、3,4-(亚甲二氧基)甲基苯丙胺(MDMA)和3,4-(亚甲二氧基)乙基苯丙胺(MDEA)5种苯丙胺类兴奋剂进行定性定量分析。方法通过向萃取纤维附近引入阴极,促使样品溶液中的目标物阳离子向萃取纤维附近迁移,从而提高了PDMS涂层在温和条件下对苯丙胺类兴奋剂的萃取效率。对EE-SPME条件进行优化,以4-苯基丁胺(4-PBA)为内标,在气-质仪联用选择离子检测(GC/MS/SIM)模式下进行定性定量分析。结果本方法的检出限为0.1~1.2ng/mL,线性范围为1~200ng/mL,相关系数为0.990~0.997,三个加标水平(5、50、100ng/mL)下的回收率为86%~110%,精密度可达3.6%~8.7%。结论该方法灵敏、准确、对环境绿色友好,并且操作简便。  相似文献   

7.
体液中氟乙酰胺SPE-GC/MS检测   总被引:1,自引:1,他引:0  
目的 利用GC/MS与固相萃取 (SPE)技术相结合 ,开发血和尿样中氟乙酰胺鼠药的GC/MS定量分析新方法 ,并用于实际案例检测。方法 选择乙酰胺为内标 ,通过比较不同固相柱的萃取效率和不同条件对回收率的影响 ,优化用于血和尿样中氟乙酰胺萃取的固相柱和提取条件 ,利用氟乙酰胺与乙酰胺质谱图的分子离子峰面积之比与氟乙酰胺浓度的定量关系 ,建立血和尿样中氟乙酰胺鼠药的GC/MS定量分析新方法。结果 用硅胶柱萃取 ,峰面积之比与氟乙酰胺浓度在 5 0~ 90 μg/ml范围呈线性关系 ,检测限为 1 0 μg/ml。血样中氟乙酰胺检测的平均回收率达 91 6% ,标准偏差小于 7 3 %。结论 此法对实际样品的测定证明可满足氟乙酰胺鼠药中毒的定性定量要求。  相似文献   

8.
HS-SPME-GC/MS法检测尿液及毛发中苯丙胺类毒品   总被引:1,自引:1,他引:0  
目的采用顶空固相微萃取(HS-SPME)、GC/MS分析方法,对生物样品中苯丙胺(AM)、甲基苯丙胺(MAM)、3,4-亚甲二氧基苯丙胺(MDA)和3,4-亚甲二氧基甲基苯丙胺(MDMA)4种苯丙胺类毒品进行定性定量分析。方法在碱性和饱和盐处理状态下,采用100μm聚二甲基硅氧烷(PDMS)萃取纤维,于顶空瓶中进行生物样品AM、MAM、MDA、MDMA 4种毒品萃取,以2-甲基苯乙胺为内标,经气-质联用选择离子检测(GC/MS/SIM)模式进行定性定量分析。对HS-SPME条件优化,对方法的精密度、准确度和检出限进行测定。结果 AM、MAM、MDA、MDMA 4种毒品尿液中的最低检出限为5ng/mL,毛发中的最低检出限为0.5ng/mg。尿液中线性关系范围为0.05μg/mL~5μg/mL,r〉0.991,回收率为82%~108%,RSD为2.6%~6.1%(n=5);毛发中线性关系范围为5ng/mg~500ng/mg,r〉0.992,回收率为80%~113%,RSD(%)为1.4%~6.8%(n=5)。结论 HS-SPME-GC/MS各项定量参数符合分析要求。该方法简单、灵活、经济、快速、无溶剂,适用于生物检材中该类毒品的分析。  相似文献   

9.
Gong FJ  Zhang RS 《法医学杂志》2006,22(5):353-354
目的建立全血中甲基苯丙胺的固相萃取毛细管区带电泳法检验方法。方法血液采用OasisHLB固相萃取小柱直接萃取,BeckmanP/ACEMDQ毛细管电泳仪区带法分析。结果回归方程y=0.0083x-0.0164,线性范围5~75μg/mL(r=0.994),日内精密度RSD=2.22%,日间精密度RSD=5.31%,盐酸甲基苯丙胺质量浓度为25.0μg/mL的全血相对回收率(91.63±2.5)%。电泳分离良好,空白无干扰。结论本方法操作简便,适用于全血中甲基苯丙胺的检验。  相似文献   

10.
多虑平SPE-HPLC分析方法的建立及其应用   总被引:2,自引:0,他引:2  
目的 建立尿样和全血中多虑平的固相萃取 高效液相色谱 (SPE HPLC)分析方法。方法 以多沙普仑为内标 ,1ml尿样或 0 5ml全血用Oasis小柱固相萃取后进Lichrospher 10 0RP 18e ( 2 5 0mm× 4mm ,5 μm)分析柱进行分析 ,2 3 0、 2 5 0nm同时进行检测。结果 尿样和全血中的检测限均 2ng/ml,线性相关系数r≥ 0 9992 ,天内和天间精密度均小于 6 75 % ,绝对回收率大于 85 % ,内源性物质不干扰测定。结论 本法快速、简便、准确 ,可用于实际案例的检测。  相似文献   

11.
A case is presented of a death caused by self-injection of sufentanil and midazolam. Biological fluids and tissues were analyzed for midazolam by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS) and for sufentanil by GC/MS. Midazolam was extracted from basified fluids or tissues homogenated with n-butyl chloride and analyzed by HPLC by using a phosphate buffer: acetonitrile (60:40) mobile phase on a mu-Bondapak C18 column at 240 nm. Sufentanil was extracted from basified fluids and tissue homogenates with hexane:ethanol (19:1). GC/MS methodology for both compounds consisted of chromatographic separation on a 15-m by 0.25-mm inside diameter (ID) DB-5 (1.0-micron-thick film) bonded phase fused silica capillary column with helium carrier (29 cm/s) splitless injection at 260 degrees C; column 200 degrees C (0.8 min) 10 degrees C/min to 270 degrees C; and electron ionization and multiple ion detection for midazolam (m/z 310), methaqualone (IS, m/z 235), sufentanil (m/z 289), and fentanyl (IS, m/z 245). Sufentanil concentrations were: blood 1.1 ng/mL, urine 1.3 ng/mL, vitreous humor 1.2 ng/mL, liver 1.75 ng/g, and kidney 5.5 ng/g. Midazolam concentrations were: blood 50 ng/mL, urine 300 ng/mL, liver 930 ng/g, and kidney 290 ng/g. Cause of death was attributed to an acute sufentanil/midazolam intoxication and manner of death a suicide.  相似文献   

12.
A simple and highly sensitive method for analysis of derivatized methamphetamine (MA) and amphetamine (AM) in whole blood was developed using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry electron impact ionization selected ion monitoring (GC-MS-EI-SIM). A whole blood sample, deuterated-MA (d(5)-MA), as an internal standard (IS), tri-n-propylamine and pentafluorobenzyl bromide were placed in a vial. The vial was heated and stirred at 90 degrees C for 30min. Then the extraction fiber of the SPME was exposed at 90 degrees C for 30min in the headspace of the vial while being stirred. The derivatives adsorbed on the fiber were desorbed by exposing the fiber in the injection port of a GC-MS. The calibration curves showed linearity in the range of 0.5-1000ng/g for both MA and AM. The time for analysis was about 80min per sample. In addition, this proposed method was applied to two autopsy cases where MA ingestion was suspected. In one case, MA and AM concentrations in the mixed left and right heart blood were 165 and 36.9ng/g, respectively. In the other case, MA and AM concentrations were 1.79 and 0.119 microg/g in the left heart blood, and 1.27 and 0.074 microg/g in the right heart blood, respectively.  相似文献   

13.
A simple determination method of amphetamine (AP) and methamphetamine (MA) in human blood was developed using on-column derivatization and gas chromatography-mass spectrometry (GC-MS). AP and MA were adsorbed on the surface of Extrelut and then derivatized the N-propoxycarbonyl derivatives using propylchloroformate. Pentadeuterated MA was used as an internal standards. The recoveries of AP and MA from the spiked blood were 89.7 and 90.3%, respectively. The calibration curves showed linearity in the range of 12.5-2000 ng/g for AP and MA in blood. The coefficients of variation of intraday and interday were 0.42-4.58%. Furthermore, this proposed method was applied to some medico-legal cases of MA intoxication. MA and its metabolite AP were detected in the blood samples, and the correlation of the blood level of amphetamines and the behaviors of the victims was in good agreement with the criteria proposed by Nagata [Jpn. J. Legal Med. 37 (1983) 513].  相似文献   

14.
A rapid, sensitive and selective high-performance liquid chromatography tandem mass spectrometric method (HPLC/MS-MS) has been developed and validated for the determination of bromadiolone in whole blood using warfarin as an internal standard (IS). Bromadiolone was extracted from the whole blood samples by liquid-liquid extraction with ethyl acetate. Multiple-reaction monitoring (MRM) was used to detect bromadiolone and IS, using precursor --> product ion combinations at m/z 527 --> 465 and 307 --> 161, respectively. The calibration curve was linear (r2=0.998) in the concentration range of 0.5-100.0 ng/mL with a lower limit of quantification of 0.5 ng/mL in whole blood. Intra- and inter-day relative standard deviations (R.S.D.s) were less than 7.5 and 11.9%, respectively. Recoveries of bromadiolone ranged from 82.1 to 85.2%. This method is found to be determined trace bromadiolone in whole blood and can be used in the diagnosis of the poisoned human beings.  相似文献   

15.
Gong FJ  Yan SM  Wu ZP  Zhang RS 《法医学杂志》2011,27(5):350-352
目的建立固相萃取-液相色谱-串联质谱(SPE-LC-MS/MS)分析全血中多塞平的方法。方法以阿米替林为内标,全血样品经固相萃取处理后,通过液相色谱-串联质谱技术进行检测(电喷雾离子源正离子方式,多反应监测模式)。监测离子对m/z多塞平为280→107、280→235、280→220,阿米替林为278→233。多塞平和阿米替林的保留时间分别为15.15min和16.94min。结果全血中多塞平在0.005~1.00μg/mL质量浓度范围内呈线性关系,线性方程为y=3.2047x+0.0339,相关系数(r)=0.9996,检出限为0.001μg/mL;平均提取回收率为78.0%~82.9%,日内精密度〈2.55%,日间精密度〈5.90%。结论本方法快速简便、灵敏、重现性好,适用于全血中多塞平的检测。  相似文献   

16.
目的建立人体全血中五氟利多浓度的液相色谱-质谱联用法(LC-MS/MS)分析方法。方法全血中五氟利多和利培酮(内标)经正己烷液-液提取后,采用Capcell Pak C18色谱柱(250mm×2.0mm5,μm)进行分离,流动相为乙腈:20mmol/L乙酸胺和0.1%甲酸溶液(75∶25,V/V),流速为0.2mL/min,然后以MS/MS电喷雾正电离的多反应监测扫描方式(MRM)测定。用于定量分析的离子为m/z 524→109(五氟利多)和m/z 411→191(内标)。结果五氟利多的最低检测限为0.2ng/mL,在0.4~400ng/mL浓度范围内线性良好(r=0.9994),低、中、高浓度(1ng/mL、10ng/mL、100ng/mL)准确度分别为97%,108%和95%,日内和日间RSD均小于15%。结论该方法简便、快速、灵敏,适用于全血中五氟利多浓度的测定。  相似文献   

17.
A simple and sensitive method for the simultaneous analysis of fenfluramine, amphetamine and methamphetamine in whole blood was developed using a headspace-solid phase microextraction (SPME) and derivatization. A 0.5 g whole blood sample, 5 microl d(5)-methamphetamine (50 micrig/ml) as an internal standard, and 0.5 ml sodium hydroxide (1 M) were placed into a 12 ml vial, and sealed rapidly with a silicone septum and an aluminum cap. Immediately after the vial was heated to 70 degrees C in an aluminium block heater, the needle of the SPME device was inserted through the septum of the vial, and the extraction fiber was exposed in the headspace for 15 min. First, heptafluorobutyric anhydride was injected into the injection port of the GC-MS, and the compounds extracted by the fiber were then desorbed and derivatized simultaneously by exposing the fiber in the injection port. The calibration curves, using an internal standard method, demonstrated good linearity throughout the concentration range from 0.01 to 1.0 microg/g. The detection limits of this method were 5.0 ng/g for fenfluramine and methamphetamine, and 10 ng/g for amphetamine. No interferences were found, and the time for analysis was about 30 min for one sample. This method was applied to a suicide case in which the victim ingested fenfluramine. Fenfluramine was detected in the blood sample collected from the victim at the concentration of 7.7 microg/g.  相似文献   

18.
A simple and rapid method for analysis of methamphetamine (MA) and amphetamine (AP) in blood was developed using head space-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry/electron impact ionization-selected ion monitoring (GC-MS/EI-SIM). A vial containing a blood sample, sodium hydroxide, and pentadeuterated methamphetamine as an internal standard, was heated at 80 °C for 20 min. The extraction fiber of the SPME was exposed for 5 min in the head space of the vial. First, heptafluorobutyric anhydride solution was injected into the injection port of the GC-MS to make heptafluorobutyramide (HFB) derivatives of amphetamines, and compounds absorbed on the fiber were detached by exposing the fiber in the injection port. Straight calibration curves of MA and AP were obtained from 0.01 to 2 μg/g in blood, respectively. No interfering substances were found, and the time for analysis was 30 min for one sample.  相似文献   

19.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C(18) 5 microm, 2.1 mm x 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 degrees C in NaOH 1M before liquid-liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1-50 ng/mL in blood and urine; in the range 5-500 pg/mg for MA, MDMA, MDEA and MBDB, and 20-500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T+12h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D+8) and scalp hair at day 60 (D+60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号