首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
HPLC-MS/MS法检测血液中甲卡西酮及其代谢物   总被引:1,自引:1,他引:0  
目的建立同时检测血液中新精神活性物质甲卡西酮及其代谢物卡西酮、麻黄碱和伪麻黄碱含量的高效液相色谱-串联质谱方法,验证甲卡西酮在大鼠体内的代谢物。方法血液样品中加入内标物甲卡西酮-D3,经甲醇提取后采用InfinityLab Poroshell 120 Chiral-V型色谱柱分离,以甲醇和乙腈混合流动相恒比洗脱,采用电喷雾离子源多反应监测模式,检测腹腔注射染毒大鼠血液中甲卡西酮及其代谢物。结果血中甲卡西酮及其代谢物10~1000ng/mL浓度范围内线性关系良好(r>0.999),检出限均小于2ng/mL,定量限为10ng/mL,方法准确度为87.06%~112.62%,批间及批内精密度均小于15%;腹腔注射染毒大鼠血中检出甲卡西酮、卡西酮、麻黄碱和伪麻黄碱。结论本研究建立了血液中甲卡西酮及其代谢物的HPLC-MS/MS定性、定量检测方法,初步验证卡西酮、麻黄碱和伪麻黄碱为甲卡西酮的代谢物。  相似文献   

2.
目的建立卡西酮的高效液相色谱检测方法。方法采用UPLC-DAD分析方法。分析柱:Agilent ZorbaxSB-Phenyl柱(250mm×4.6mm,5μm),流动相为三氟乙酸(pH 3.5)∶乙腈为85∶15,流速0.2mL/min,检测波长254nm。结果卡西酮在0.5~1 000μg/mL浓度范围内线性关系良好R2=0.999 4,日内与日间保留时间和峰面积的标准偏差(RSD)均<1.06%,检出限为0.068μg/mL,平均回收率95.9%。结论本方法峰形好,分离度好,线性范围良好,回收率高,适用于刑事案件中卡西酮的定性定量分析。  相似文献   

3.
4-甲基乙卡西酮(4-Methylethcathinone,4-MEC)是一种近年来在英、美、澳等国家较为流行的新兴的合成类兴奋剂,属于合成卡西酮类物质,是管制精神药物卡西酮(cathinone)和甲卡西酮的衍生物,化学名:1-(4-甲基苯基)-2-乙基氨基-1-丙酮(2-(ethylamino)-1-(4-tolyl) propan-1-one),分子式:C12H17NO,分子量:191.27.4-甲基乙卡西酮与4-甲基甲卡西酮(4-Methylmethcathinone,4-MMC)结构类似,结构式见图1,可以单独使用,或者和其他的卡西酮类化合物共同使用.  相似文献   

4.
目的 建立基于傅里叶变换红外光谱(FTIR)、气相色谱-质谱(GC-MS)结合高分辨质谱技术联合鉴定未知样品的方法.方法 未知样品采用红外专用取样器直接检测;甲醇溶解后采用GC-MS和组合型高分辨质谱检测,以MDMA为内标物.结果 未知样品获得的红外光谱特征吸收峰为1679(C=O键),1603,1502,1453,1423,1259,1121,1090,1035,930,887,838,768,742和717cm-1,质谱特征碎片峰(m/z)为58.1,91.0,120.9,149.0和207.0,测得的精确质量数[M+H]+为208.0966.经信息分析未知样品鉴定为3,4-亚甲二氧基甲卡西酮,该物质属于新型化学合成卡西酮类精神活性物质,已经列入部分欧盟国家的管制药物目录.结论 本方法可用于3,4-亚甲二氧基甲卡西酮的鉴定.  相似文献   

5.
甲卡西酮概述及其分析方法   总被引:1,自引:0,他引:1  
甲卡西酮吸食后具有精神刺激剂作用,有时候作为娱乐药物,具有成瘾性,长期高剂量使用可能导致急性神经紊乱。甲卡西酮R位的碳氧双键具有极性,因此像安非他明一样可以通过血脑屏障。它是潜在的中枢神经系统刺激剂和多巴胺再吸收抑制剂。甲卡西酮在美国是I类精神管制药物,任何情况下都是非法使用。本文还综述了甲卡西酮的检验分析方法,包括物理分析方法和仪器分析方法。仪器分析方法主要是气相色谱/质谱法(GC/MS)、高效液相色谱法(HPLC),此外还有紫外光谱法(uV),红外光谱法(IR),核磁共振光谱法(NMR)以及毛细管电泳(CE)等方法。  相似文献   

6.
目的 对毒品案件样本进行N-甲基-3,4-亚甲二氧基卡西酮(bk-MDMA)确证检验.方法 采用阴离子检测、颜色反应、气质联用(GC/MS)、核磁共振(NMR)、傅立叶变换红外光谱(FTIR)等方法对毒品案件中白色晶体样本进行剖析确证.结果 快速筛查结果提示样本为具有亚甲二氧基结构的仲胺物质的盐酸盐,经GC/MS、NMR、FTIR检验,确证样本为bk-MDMA,系3,4-亚甲二氧基甲基苯丙胺(3,4-methylenedioxymethamphetmaine,MDMA)的卡西酮类似物.结论 采用本文所用方法可以对毒品案件样本中N-甲基-3,4-亚甲二氧基卡西酮成分进行确证,该药具有滥用的可能性应引起相关部门的重视.  相似文献   

7.
甲卡西酮是一种从名为"Khat"植物(又称为Catha edulis)中提取的生物碱,其结构式如图1所示,1928年首次由麻黄碱氧化合成得到甲卡西酮[1]。我国2007年颁布的《麻醉药品和精神药品品种目录》将甲卡西酮列为I类精神药品。其为潜在的中枢神经系统刺激剂和多巴胺再吸收抑制剂,长期高剂量使用可能导致急性神经紊乱,具有成瘾性。  相似文献   

8.
目的 应用代谢组学技术研究腹腔注射甲卡西酮大鼠血浆代谢谱的变化,筛选出可用于甲卡西酮吸毒法医学鉴定的入体生物标志物.方法 SD大鼠随机分成低剂量甲卡西酮组(腹腔注射甲卡西酮溶液3mg/kg)、中剂量甲卡西酮组(腹腔注射甲卡西酮溶液12mg/kg)和对照组(腹腔注射等量生理盐水),注射3min后收集大鼠眼眶血,应用超高效...  相似文献   

9.
目的 建立一种同时测定血液样品中12种卡西酮类毒品的在线固相萃取-超高效液相色谱-串联质谱法。方法 血液样品用乙腈沉淀蛋白,经离心、稀释、过滤后上样,采用PLRP-S在线固相萃取柱(2.1mm×12.5mm,15~20μm)富集纯化,Poroshell 120 EC-C18色谱柱(3.0mm×150mm,2.7μm)进行分离,在线固相萃取柱以乙腈-5%(体积分数)甲醇作为流动相进行流速1.0 mL/min的梯度洗脱,色谱柱以5 mmol/L乙酸铵缓冲液[含0.1%(体积分数)甲酸]-乙腈作为流动相进行流速0.4m L/min的梯度洗脱。离子源为电喷雾离子源,采用多反应监测模式进行测定。结果 12种卡西酮类毒品线性关系良好,相关系数均大于0.998,方法检出限为0.1~0.5ng/mL,定量限为0.3~1.5ng/mL。12种卡西酮类毒品在3个不同质量浓度条件下的回收率为70.9%~108%,日内精密度和日间精密度分别为1.5%~8.9%、5.1%~44.5%(n=6)。结论 该方法操作简单方便、样品需求量少、灵敏度高、检出限低,可用于血液样品中卡西酮类毒品的测定。  相似文献   

10.
目的通过正交试验比较甲卡西酮在不同溶剂pH值、浓缩温度、保存时间和保存温度提取条件下的稳定性,建立适合污水中甲卡西酮稳定测定的提取制备方法用于超高压液相色谱质谱联用仪的检测。方法在甲卡西酮检测过程中设置4个因素(提取溶剂pH值、浓缩温度、保存时间、保存温度)进行考察,每个因素选择3个水平,然后采用L9(3~4)进行正交试验,提取液使用液相色谱三重四极杆串联质谱仪(Exion LC/QTRAP 6500)检测,以甲卡西酮m/z=105.1的子离子峰面积作为定量指标,采用SPSS 16.0统计软件进行数据分析找出最佳条件。结果正交试验结果分析表明,提取溶剂pH=2.0,保存时间0d,保存温度-20℃,浓缩温度60℃为最佳提取条件,并根据该条件进行了方法学考察,结果表明甲卡西酮在1ng/L~500ng/L浓度范围内线性良好,提取回收率90%,RSD5.33%,基质效应6.52%,RSD0.31%,均符合相关标准要求。结论本研究通过正交试验筛选到的甲卡西酮制备方法有利于其稳定检测,适用于质谱的定性定量分析,可用于对污水中甲卡西酮成分的监测工作。  相似文献   

11.
目的建立全血中佐匹克隆、唑吡坦和扎来普隆的液相色谱一四级杆飞行时间串联质谱联用同时检测方法。方法采用液液萃取进行提取,提取物以ZorbaxEclipsePlusC18(2.1×50mm,1.8fire)色谱柱分离,以10mmol/L甲酸铵(含0.1%甲酸)一乙腈为流动相梯度洗脱,流速为0.2mL/min,四级杆一飞行时间串联质谱检测。结果全血中佐匹克隆和扎来普隆的线性范围为10ng/mL-500ng/mL,检出限为3ng/mL唑吡坦的线性范围为3ng/mL-300ng/mL,检出限为lng/mL。结论本方法准确、快速、灵敏,可用于全血中佐匹克隆、唑吡坦和扎来普隆的同时定性、定量检测。  相似文献   

12.
目的建立血、肝组织中芬太尼和舒芬太尼的HPLC-MS/MS分析方法。方法采用Oasis(MCX固相萃取柱进行提取,以XTerraTMRP18柱(2.1mm×100mm,3.5μm)色谱柱分离,以乙腈∶5mmol/L醋酸铵水溶液(氨水调pH=9.5)(65∶35)为流动相,流速为0.2mL/min。结果血及肝组织添加样品的线性范围为10ng/mL~500ng/mL,最小检出限为0.1ng/mL。结论本方法准确、快速,可用于生物检材血、肝组织中芬太尼和舒芬太尼的定性定量分析。  相似文献   

13.
HS-SPME-GC/MS法检测尿液及毛发中苯丙胺类毒品   总被引:1,自引:1,他引:0  
目的采用顶空固相微萃取(HS-SPME)、GC/MS分析方法,对生物样品中苯丙胺(AM)、甲基苯丙胺(MAM)、3,4-亚甲二氧基苯丙胺(MDA)和3,4-亚甲二氧基甲基苯丙胺(MDMA)4种苯丙胺类毒品进行定性定量分析。方法在碱性和饱和盐处理状态下,采用100μm聚二甲基硅氧烷(PDMS)萃取纤维,于顶空瓶中进行生物样品AM、MAM、MDA、MDMA 4种毒品萃取,以2-甲基苯乙胺为内标,经气-质联用选择离子检测(GC/MS/SIM)模式进行定性定量分析。对HS-SPME条件优化,对方法的精密度、准确度和检出限进行测定。结果 AM、MAM、MDA、MDMA 4种毒品尿液中的最低检出限为5ng/mL,毛发中的最低检出限为0.5ng/mg。尿液中线性关系范围为0.05μg/mL~5μg/mL,r〉0.991,回收率为82%~108%,RSD为2.6%~6.1%(n=5);毛发中线性关系范围为5ng/mg~500ng/mg,r〉0.992,回收率为80%~113%,RSD(%)为1.4%~6.8%(n=5)。结论 HS-SPME-GC/MS各项定量参数符合分析要求。该方法简单、灵活、经济、快速、无溶剂,适用于生物检材中该类毒品的分析。  相似文献   

14.
目的建立利用顶空固相微萃取(HS/SPME)结合气相色谱/质谱联用技术(GC/MS)快速检测吸毒人员尿液中氯胺酮(KT)及其主要代谢物去甲基氯胺酮(NK)的方法。方法样品瓶中加入尿样、6mol/L氢氧化钠溶液、固体氯化钠、SKF525A(内标),85℃下加热搅拌,用100μm聚二甲基硅氧烷(PDMS)萃取头顶空萃取10min,GC/MS(EI-SIM)检测。结果尿液中NK和KT浓度在0.1~2.0μg/ml范围内呈现线性关系,相关系数分别为(r^2)0.9991和0.9945,检测限(D/N=3)分别为0.87ng/ml和2.76ng/ml,定量限(S/N=10)分别为2.90ng/ml和18.52ng/ml。1ml尿液加标600ng,NK回收率在85.5%~110.1%,RSD〈13.2%(n=6);KT回收率在77.5%~109.6%,RSD〈511.99%(n=6)。结论建立的方法简单、快速、灵敏、准确,适合尿液等生物检材中NK及KT的快速定性定量分析。  相似文献   

15.
HPLC—ESI—MS/MS法测定全血中溴敌隆   总被引:2,自引:0,他引:2  
目的建立全血中测定溴敌隆的高效液相色谱-电喷雾-质谱联用检测方法。方法血液样品经乙醚提取后,采用Ultra Cl8柱(150mm×2.1mm×5μm);柱温:23℃;流动相:甲醇;流速:200μl/min;在负离子模式下,通过电喷雾电离(ESI),多反应监测(MRM)测定,外标法定量分析溴敌隆。结果在0.1-50mg/1范围内两者均呈良好的线性关系。溴敌隆的回收率为94.34%(RSD=7.3%),考察了方法的基质抑制作用(matrix effect,ME)(%)=B/A×100%=91.86%(RSD=4.78%)定量检出限为0.028ng。结论本方法简便、灵敏度高、定性定量准确,可以作为检验全血中溴敌隆检验的一种手段。  相似文献   

16.
目的采用快速溶剂萃取-GC/MS分析方法检验血液中杀虫双代谢产物沙蚕毒素。方法样本用硅藻土、中性三氧化二铝处理,用乙酸乙酯:环己烷:丙酮(2:2:1)进行萃取,GC/MS方法进行测定,并考察实验最佳条件。结果沙蚕毒素在50~2000ng/mL范围内线性关系良好,相关系数为0.999,检测限为15ng/mL,平均回收率为98.22%,相对标准偏差为4.6%。结论速溶剂萃取-GC/MS分析方法简便,快速,准确、灵敏度高,可在血中沙蚕毒素检验中选用。  相似文献   

17.
本文建立了离子色谱-抑制电导检测测定含有高浓度硝酸根的爆炸尘土中残留氯酸根的方法。使用高容量阴离子分析柱IonPac AS19,以KOH为流动相,梯度淋洗,氯酸根在8min左右出峰,15min之内完成常规离子的分析,方法的检测限为2.67ng/ml(S/N=3)。方法的线性范围为0.01~1000μg/ml,线性相关系数为0.9998。模拟样品中1μg/mlClO3^-的峰面积相对标准偏差为0.98%,峰高的相对标准偏差为0.66%。将此法应用于两起爆炸案的爆炸尘土样品测定,加标回收率在99%以上。对主要干扰物离子硝酸根的研究发现,即使3000μg/ml的硝酸根对低浓度氯酸根(几个ppm级)的测定也不存在干扰,确保了测定结果的准确性。  相似文献   

18.
Amphetamine and related derivatives are widely abused central- and psychostimulants. Detection of certain derivatives, such as methcathinone, by commonly available immunoassay screening techniques is insufficient. Multi-analyte confirmations for amphetamine type stimulants are therefore required, but traditional gas chromatography–mass spectrometry methods necessitate lengthy analytical procedures with prolonged sample turn-around times. A validated rapid GC–MS assay for urinary confirmation of amphetamine, methamphetamine, methcathinone, ephedrine, norephedrine, methylenedioxyamphetamine, methylenedioxymethamphetamine, methylenedioxyethylamphetamine and N-methyl-1-(3,4 methylenedioxyphenyl)-2-butanamine is reported. The method entailed in situ derivatization of urine specimens by extractive acylation with pentafluoropropionic anhydride, followed by rapid chromatography on a microbore capillary column. Analytes were separated in less than 3 min and quantified simultaneously by selected-ion monitoring using stable isotope substituted internal standards. The total instrument cycle-time was 6 min per sample. The limits of detection were between 1.5 ng/mL and 6.25 ng/mL for the various analytes. Intermediate precision and accuracy were in the range of 6.3–13.8% and 90.5–107.3% for the respective analytes at the lower limit of quantitation, and between 5.8–12.6% and 95.4–103.1% for the high control. Long-term storage of methcathinone positive specimens at ?20 °C proved insufficient stability of this analyte. The proposed assay is precise and accurate for confirmation of amphetamine and derivatives in urine. The complementary approach of extractive-derivatization and fast GC–MS analysis is especially applicable in routine clinical settings where reduced sample turn-around times are required. Further investigation of cathinone as a possible metabolite of methcathinone is warranted, based on results from analyzed authentic urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号