首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的考察司来吉兰及其代谢物在尿液中的含量变化,并结合实际案例探讨手性分析区分甲基苯丙胺滥用与司来吉兰服用的可行性。方法采用CHIROBIOTICTM V2手性液相色谱柱对尿液样品进行手性分离和液相色谱-串联质谱(LC-MS/MS)法测定,并对司来吉兰服药志愿者尿样、疑服用司来吉兰的涉毒人员尿样进行甲基苯丙胺和苯丙胺的手性分析。结果服用5 mg司来吉兰后,尿液中司来吉兰的检出时限仅为7h。尿液中R(-)-甲基苯丙胺和R(-)-苯丙胺约在7h质量浓度最高,分别为0.86μg/m L和0.18μg/m L,并在80 h和168 h后无法检出。应用该方法成功分析了疑服用司来吉兰的涉毒人员尿液中甲基苯丙胺和苯丙胺的来源。结论甲基苯丙胺和苯丙胺的手性分析以及司来吉兰代谢物检测可区分甲基苯丙胺滥用与司来吉兰服用。  相似文献   

2.
芬氟拉明和苯丙胺类兴奋剂的固相微萃取   总被引:6,自引:1,他引:5  
用固相微萃取技术从血中提取芬氟拉明、苯丙胺和甲基苯丙胺。在 70℃条件下用 10 0 μm聚二甲基硅氧烷萃取头吸附 15min。重氢甲基苯丙胺作内标 ,采用柱前衍生化的进样方式 ,气质联用仪测定。选择离子m /z2 6 8(芬氟拉明 )、m/z2 40 (苯丙胺 )、m /z2 5 4(甲基苯丙胺 )和m/z2 5 8(重氢甲基苯丙胺 ,内标 )的峰面积比定量。血中检测浓度可达 0 0 1~ 0 0 3μg/g。通过解剖例中芬氟拉明的实际测定 ,证明这是一个从血液中提取分析苯丙胺类衍生物的快速准确的方法  相似文献   

3.
目的建立分子印迹固相萃取(MISPE)、GC/MS分析方法,用于血液中苯丙胺类毒品检测。方法 10mmol/L醋酸铵缓冲液(pH8.0)4倍稀释空白添加血液,1mL甲醇,1mL10mmol/L醋酸铵缓冲液(pH8.0)活化苯丙胺类分子印迹固相萃取柱;2×1mL去离子水、1mL60%的乙腈去离子水、1mL1%醋酸乙腈洗涤杂质;2×1mL1%甲酸/甲醇洗脱,洗脱液挥干定容,经GC/NPD、GC/MS分析检测。结果各种苯丙胺类毒品回收率均在90%以上,在20~5 000ng/mL浓度范围内线性关系良好,r2为0.995 7~0.998 9,LOQ在16~30ng/mL之间,LOD在8~15ng/mL之间。结论本方法回收率高,净化效果显著,稳定性好,杂质干扰少,可用于血液中低浓度苯丙胺类毒品的分析检测。  相似文献   

4.
A simple and sensitive method for the simultaneous analysis of fenfluramine, amphetamine and methamphetamine in whole blood was developed using a headspace-solid phase microextraction (SPME) and derivatization. A 0.5 g whole blood sample, 5 microl d(5)-methamphetamine (50 micrig/ml) as an internal standard, and 0.5 ml sodium hydroxide (1 M) were placed into a 12 ml vial, and sealed rapidly with a silicone septum and an aluminum cap. Immediately after the vial was heated to 70 degrees C in an aluminium block heater, the needle of the SPME device was inserted through the septum of the vial, and the extraction fiber was exposed in the headspace for 15 min. First, heptafluorobutyric anhydride was injected into the injection port of the GC-MS, and the compounds extracted by the fiber were then desorbed and derivatized simultaneously by exposing the fiber in the injection port. The calibration curves, using an internal standard method, demonstrated good linearity throughout the concentration range from 0.01 to 1.0 microg/g. The detection limits of this method were 5.0 ng/g for fenfluramine and methamphetamine, and 10 ng/g for amphetamine. No interferences were found, and the time for analysis was about 30 min for one sample. This method was applied to a suicide case in which the victim ingested fenfluramine. Fenfluramine was detected in the blood sample collected from the victim at the concentration of 7.7 microg/g.  相似文献   

5.
An extraction and determination method of most important amphetamine derivatives in serum has been developed. The procedure comprises liquid-liquid extraction with tert-butyl methyl ether of the sample under basic conditions, centrifugation, formation of hydrochloric salts after the separation of organic phase, vacuum evaporation of the organic solvent at 60 degrees C, and trifluoroacetylation by on-line flash injection with MBTFA. GC analysis was performed by electron impact GC-MS in SIM mode. In this way satisfactory identification of 12 amphetamine derivatives could be obtained. Amphetamine, methamphetamine, MDA, MDMA and MDEA could be analyzed by using pentadeuterated analogs as internal standards. Low limits of detection 2.5-6.9 ng/mL could be reached. The assay was linear within the 5-100 ng/mL range with a regression coefficient greater than 0.999 for each compound. Our derivatization method is of low cost since only 1 microL of MBTFA is used for each flash trifluoroacetylation.  相似文献   

6.
GC法检测血液和尿液中甲基苯丙胺和咖啡因   总被引:1,自引:1,他引:0  
目的建立同时测定血、尿中甲基苯丙胺和咖啡因含量的方法。方法应用GC/NPD技术,以4-苯基丁胺为内标,直接碱化,用氯仿提取,三氟乙酸酐衍生化,8CB熔融石英毛细管柱(30m×0.25mm×0.25μm)分析。结果生物样品中甲基苯丙胺与咖啡因在0.012—7.5μg/mL浓度范围内线性关系良好,检测限(S/N=3)依次为1.2ng/mL,0.6ng/mL(血);1.6ng/mL,0.8ng/mL(尿)。苯丙胺在0.017—10.0μg/mL浓度范围内线性关系良好,检测限为1.6mg/mL(血),3.2ng/mL(尿)。所有样本回收率均大于85%。结论本方法准确、灵敏,适用于血、尿中甲基苯丙胺及其代谢物苯丙胺的三氟乙酸酐衍生化物和咖啡因的同时检测,为判定滥用毒品种类、追查毒品来源以及研究生物体内甲基苯丙胺和咖啡因的交互影响提供了检测手段。  相似文献   

7.
A fast method was designed for the simultaneous determination of amphetamine (A), methamphetamine (MA), PMA, MDA, MDMA, MDEA and MBDB in urine. The drugs were analysed by LC (ESI)-MS/MS, after a simple liquid-liquid extraction in the presence of the deuterated analogues. Reverse phase separation on an Atlantis dC18 Intelligent Speed column was achieved in less than 4 min under gradient conditions, and the total run time was 8 min. The method was fully validated, including linearity (1-1000 ng/mL for A, MDMA, MDEA and MBDB; 2-1000 ng/mL for MDA and PMA; 1-200 ng/mL for MA; r2>0.99 for all compounds), recovery (>80%), within-day and between-day precision and accuracy (CV and MRE<12.7% for intermediate level and ULOQ, and <17.2% for LLOQ), limit of detection (0.2 ng/mL for MDMA, MDEA and MBDB; 0.5 ng/mL for A, MA and PMA; 1 ng/mL for MDA) and quantitation (1 ng/mL for A, MA, MDMA, MDEA and MBDB; 2 ng/mL for MDA and PMA) and relative ion intensities. No matrix effect was observed. The procedure proved to be sensitive, specific and rapid, and was applied to real forensic cases.  相似文献   

8.
A rapid, accurate, precise, reproducible, economical, and environmentally gentle method using capillary electrophoresis (CE) is presented for the routine analysis of methamphetamine, amphetamine, MDA, MDMA, MDEA, and cocaine in seized drugs. The methodology uses a 32 cm by 50 microm capillary (length to detector 23.5 cm) with a commercially available buffer kit and diode array UV detection. Dynamic coating of the capillary surface is accomplished by flushing with base for 1 min, a proprietary polycation for 1 min, and then a proprietary polyanion for 2 min. This approach provides a relatively high and stable electroosmotic flow (EOF), even at low pHs. The background electrolyte (BGE) contains 75 mM phosphate buffer (pH 2.5) with the same polyanion as above. Using this methodology, amphetamine, methamphetamine, MDA, MDMA, MDEA, and an internal standard (n-butylamphetamine) are baseline resolved in less than 5 min. The run-to-run migration time %RSDs and peak area %RSDs are typically <0.3% and <2.1%, respectively. The day-to-day and capillary-to-capillary migration time %RSDs are <1.5% and <2.1%, respectively. The %RSDs of the relative migration times compared with the internal standard on a day-to-day and capillary-to-capillary basis are <0.2% and <0.06%, respectively. The linear dynamic range using peak areas range from 0.003 to 0.10 mg/mL. The correlation coefficients are >0.9998, with all calibration curves passing at or near the origin. Similar data are obtained for cocaine and its internal standard henyltoloxamine. None of the compounds usually encountered in illicit samples interfere with the target compound (e.g., methamphetamine and cocaine) or the internal standard. Quantitative results for synthetic mixtures and seized exhibits are in good agreement with actual values, and also with results obtained from other techniques. The relatively high EOF for the dynamically coated capillary system allows for the screening of basic, acidic, and neutral adulterants in drug seizures; identification is facilitated by the use of automated UV library searches.  相似文献   

9.
目的建立快速筛选检测中毒者血液、尿液中吗啡、甲基苯丙胺、苯丙胺、麻黄碱、3,4-亚甲基双氧甲基苯丙胺(MDMA)、3,4-亚甲基双氧苯丙胺(MDA)、氯胺酮并定量分析的方法;方法采用超高效液相色谱(UP—LC)-二极管阵列检测器(PAD);结果峰面积和质量浓度的线性关系良好,分离效果好、速度快、灵敏度提高;结论该方法与传统的HPLC相比能够更好满足实际办案中吗啡、甲基苯丙胺、苯丙胺、麻黄碱、MDMA、MDA、氯胺酮等中毒者血液、尿液的筛选检测并定量分析。  相似文献   

10.
The purpose of this study was to evaluate the ability of two amphetamine class screening reagents to exclude ephedrine (EPH), pseudoephedrine (PSEPH), and phenylpropanolamine (PPA) from falsely producing positive immunoassay screening results. The study also sought to characterize the prevalence and concentration distributions of EPH, PSEPH, and PPA in samples that produced positive amphetamine screening results. Approximately 27,400 randomly collected human urine samples from Navy and Marine Corps members were simultaneously screened for amphetamines using the DRI and Abuscreen online immunoassays at a cutoff concentration of 500 ng/mL. All samples that screened positive were confirmed for amphetamine (AMP), methamphetamine (MTH), 3,4-Methylenedioxyamphetamine (MDA), 3,4-Methylenedioxymethamphetamine (MDMA), EPH, PSEPH, and PPA by gas chromatography/mass spectrometry (GC/MS). The DRI AMP immunoassay identified 1,104 presumptive amphetamine positive samples, of which only 1.99% confirmed positive for the presence of AMP, MTH, MDA, or MDMA. In contrast, the online AMP reagent identified 317 presumptive amphetamine positives with a confirmation rate for AMP, MTH, MDA, or MDMA of 7.94%. The presence of EPH, PSEPH, or PPA was confirmed in 833 of the 1,104 samples that failed to confirm positive for AMP, MTH, MDA, or MDMA; all of the 833 samples contained PSEPH. When compared to the entire screened sample set, PSEPH was present in approximately 3%, EPH in 0.9%, and PPA in 0.8% of the samples. The results indicate that cross reactivities for EPH, PSEPH, and PPA are greater than reported by the manufacturer of these reagents. The distribution of concentrations indicates that very large concentrations of EPH, PSEPH, and PPA are common.  相似文献   

11.
A GC-MS method has been developed for the detection of amphetamine, methamphetamine, and the ephedrines, in seizures and the urine, based on on-GC condensation (derivatization) with cyclohexanone. The method is simple: the dried seizure material or the urine extract was mixed with cyclohexanone and injected into the GC-MS. The method was found to be superior to the methods based on acyl and trimethylsilyl (TMS) derivatization. Unlike for the acyl and TMS derivatives, the molecular and fragment ions of the cyclohexanone condensation products (cyclohexanone derivatives) were of substantial abundance, a useful property in unambiguous compound characterization. Furthermore, the high stability of the "derivatizing" reagent, cyclohexanone, compared with acyl and TMS derivatizing reagents, is a useful property in method development. The present method has proved selective and, tentatively, sensitive enough in the following areas (where methods based on acyl and TMS derivatization, as tested in this laboratory, have failed): (a) detection of amphetamine as a metabolite of methamphetamine; (b) detection of norpseudoephedrine as a metabolite of pseudoephedrine; (c) detection of amphetamine as an impurity of methamphetamine; (d) detection of cathine (norephedrine) as a constituent of Khat leaves; and (e) differentiation of Khat use from phenylpropanolamine use.  相似文献   

12.
It has recently been reported that purity of illicit tablets of ecstasy (MDMA) is now high. Our objective was to confirm whether hair of drug users, who request only ecstasy from their supplier, contains MDMA in the absence of other drugs. GC-MS analysis of scalp hair segments disclosed the presence of MDMA in 19 of 21 subjects and amphetamine/methamphetamine in eight subjects. Surprisingly, seven subjects had hair levels of the MDMA metabolite, MDA, equal to or greater than those of MDMA, suggesting use of MDA in addition to that of MDMA. These amphetamine derivatives might be included by clandestine laboratories to enhance effects of the drug cocktail or because of a perception that MDA synthesis might be simpler than that of MDMA. Drug users and investigators examining possible brain neurotoxic effects of MDMA need to consider that "ecstasy" tablets can contain MDA and methamphetamine despite no demand for the drugs.  相似文献   

13.
Two hundred and forty-seven serum samples which have been collected by police during roadside testing and have been found positive for amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and/or 3,4-methylenedioxyethamphetamine (MDE) were analyzed for gamma-hydroxybutyrate (GHB). Serum samples were spiked with deuterated GHB as internal standard and acetonitrile was added to achieve dilution and protein precipitation. Samples were analyzed with a LC-MS/MS system operated in the multiple reaction monitoring mode (MRM) using a TurboIonSpray source. Chromatographic separation was achieved using a Synergi Polar RP column applying a gradient elution with a runtime of 15 min. To differentiate between endogenous and exogenously administered GHB a cut-off concentration of 10 microg/mL was applied. Five samples exceeded this concentration and were found positive for GHB. These samples were only found positive for amphetamine but no other amphetamine derivatives were detected, while in three samples THC and in one sample cocaine, benzoylecgonine and ethanol were found.  相似文献   

14.
Hair of young subjects (N = 36) suspected for drug abuse was analysed for morphine, codeine, heroin, 6-acetylmorphine, cocaine, methadone, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), and 3,4-methylenedioxyethylamphetamine (MDEA). The analysis of morphine, codeine, heroin, 6-acetylmorphine, cocaine, and methadone in hair included incubation in methanol, solid-phase extraction, derivatisation by the mixture of propionic acid anhydride and pyridine, and gas chromatography/mass spectrometry (GC/MS). For amphetamine, methamphetamine, MDA, MDMA, and MDEA analysis, hair samples were incubated in 1M sodium hydroxide, extracted with ethyl acetate, derivatised with heptafluorobutyric acid anhydride (HFBA), and assayed by GC/MS. The methods were reproducible (R.S.D. = 5.0-16.1%), accurate (85.1-100.6%), and sensitive (LoD = 0.05-0.30ng/mg). The applied methods confirmed consumption of heroin in 18 subjects based on positive 6-acetylmorphine. Among these 18 heroin consumers, methadone was found in four, MDMA in two, and cocaine in two subjects. Cocaine only was present in two, methadone only in two, methamphetamine only in two, and MDMA only in seven of the 36 subjects. In two out of nine coloured and bleached hair samples, no drug was found. Despite the small number of subjects, this study has been able to indicate the trend in drug abuse among young people in Croatia.  相似文献   

15.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C(18) 5 microm, 2.1 mm x 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 degrees C in NaOH 1M before liquid-liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1-50 ng/mL in blood and urine; in the range 5-500 pg/mg for MA, MDMA, MDEA and MBDB, and 20-500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T+12h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D+8) and scalp hair at day 60 (D+60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

16.
Phentermine (PT) has been widely used as an anti-obesity drug. This drug has to be used with caution due to its close resemblance with amphetamines in its structure and toxicity profile. Recently, PT is in distribution by illegal modes and is found to be available through sources such as the internet, thus their misuse and/or abuse is threatening to be a serious social issue. In the present study, 32 cases of drug suspects were observed for PT abuse, detected using hair samples for drug analysis. PT and other amphetamines, such as methamphetamine (MA), amphetamine (AP), 3,4-methylenedioxyamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA), were extracted using 1% HCl in methanol for 20 h at 38°C. The extracts were derivatized with trifluoroacetic anhydride (TFAA) and analyzed using gas chromatography/mass spectrometry (GC/MS). Among the 32 cases of PT abuse, MA and its main metabolite, AP were identified in seven cases and MDMA and its main metabolite, MDA were detected in two other cases.  相似文献   

17.
A fast and simple method to detect some commonly abused illicit drugs, amphetamine, methamphetamine, 3,4-methylendioxy-amphetamine (MDA), 3,4-methylendioxy-methamphetamine (MDMA), 3,4-methylendioxy-N-ethylamphetamine (MDEA) and phencyclidine (PCP) in urine using solvent microextraction (SME) combined with gas chromatography (GC) analysis has been developed. The extraction is conducted by suspending a 2 μl drop of chloroform in a 2 ml urine sample. Following 8 min of extraction, the organic solvent is withdrawn into the syringe and injected into a GC with a pulsed discharge helium ionization detector (PDHID).The effects of different extraction solvents and times, pH and sample preparation were studied. The optimized method was capable of detecting drugs in urine at concentrations below Substance Abuse and Mental Health Services Administration (SAMHSA) established cut-off values for preliminary testing. Good linearity and reproducibility of extraction were obtained. The limits of detection were 0.5 μg/ml for amphetamine, 0.1 μg/ml for methamphetamine and MDA, 0.05 μg/ml for MDMA, 0.025 μg/ml for MDEA and 0.015 μg/ml for PCP. Relative standard deviation (R.S.D.) values ranged between 5 and 20% for the studied drugs.  相似文献   

18.
The use of amphetamine and 'ecstasy' (MDMA) has increased exponentially in many European countries since the late nineties, leading to a rapid growth in the number of clinical and forensic analyses. Therefore, a rapid screening procedure for these substances in biological specimens has become an important part of routine toxicological analysis in forensic laboratories. The objective of this study was to evaluate the Cozart amphetamine enzyme-linked immunosorbent assay (ELISA) for the screening of plasma samples and oral fluid samples (collected with the Intercept device). Authentic plasma samples from drivers (n=360) were screened, using an 1:5-fold dilution. True positive, true negative, false positive and false negative results were determined relative to the in-house routine GC-MS analysis. Samples consisted of 144 amphetamine-only positives, 141MDMA/MDA-only positives, and 74 negatives when using the limit of quantitation as the cut-off level for confirmation (10 ng/mL). Using these results, receiver operating characteristic (ROC) curves were generated and optimal cut-off values for the screening assay were calculated. Analysis showed that the ELISA is able to predict the presence of either amphetamine or *MDMA/MDA (*MDMA as its metabolite MDA) in plasma samples with 98.3% sensitivity and 100% specificity at a cut-off value of 66.5 ng/mL d-amphetamine equivalents. A similar analysis was conducted on 216 oral fluid specimens collected from a controlled double blind study. Subjects received placebo or a high (100 mg) or low (75 mg) dose of MDMA. Oral fluid samples were collected at 1.5 and 5.5h after administration. Combined results of the analysis of the high and low dose oral fluid samples indicated a screening cut-off of 51 ng/mL d-amphetamine equivalents with both a sensitivity and specificity of 98.6% (using a LC-MS/MS confirmation cut-off of 10 ng/mL). In conclusion, these data indicate that the Cozart AMP EIA plates constitute a fast and accurate screening technique for the identification of amphetamine and MDMA/MDA positive plasma samples and oral fluid specimens (collected with Intercept. It should be emphasized that method validation should be performed for each type of biological matrix.  相似文献   

19.
d-Amphetamine and l-amphetamine were clearly separated by HPLC analysis using a chiral crown ether column (CROWNPACK CR(+)). As little as 0.1% d-amphetamine in bulk methamphetamine could be determined. The enantiomeric form of the by-product in a drug sample may be helpful in evaluating the possibility of illicit synthesis. When the isomeric composition of amphetamine present in urine from a methamphetamine abuser was examined, only d-amphetamine was detected as a metabolite. The present method was also applied to the enantiomeric separation of norephedrine.  相似文献   

20.
目的研究固相微萃取(SPME)用于尿中苯丙胺(AMP)、甲基苯丙胺(MET)、3,4-亚甲二氧基苯丙胺(MDA)和3,4-亚甲二氧基甲基苯丙胺(MDMA)的提取。方法样品调节至碱性和用盐饱和后用顶空SPME,内标为MET-d5。萃取纤维为100μm聚二甲基硅氧烷(PDMS)。用气质联用选择离子检测(GC/MS/SIM)。结果0.2μg/ml加标尿样,AMP、MET、MDA和MDMA的富集倍数分别为22,60,13和47。检出限(S/N=3)为0.4~9.5ng/ml。线性范围为0.05~1μg/ml。0.2、0.5和1.0μg/ml加标尿样,相对回收率77.9%~112.4%,变异系数2.7%~18.0%(n=5)。用该方法分析5个案件样品,和常规液液萃取结果接近。结论顶空SPME法用于尿中AMP、MET、MDA和MDMA等化合物的分析,无需有机溶剂,富集效率高,提取-富集-进样一体化,简单方便实用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号