首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
尿中氯胺酮及其代谢物检测的研究   总被引:3,自引:0,他引:3  
目的建立氯胺酮滥用者尿中氯胺酮及其代谢物检测方法。方法尿液用有机溶剂液-液萃取,气相色谱/氮磷检测器、电子捕获检测器、氢火焰检测器和气-质联用仪测定。结果确认了尿液中氯胺酮的主要代谢物,尿液中氯胺酮及去甲氯胺酮的最小检测限均为2ng/mL,脱氢去甲氯胺酮的最小检测限为5ng/mL。结论所建方法快速、灵敏、准确,能够满足氯胺酮滥用者尿液检测的需要。  相似文献   

2.
血液、尿液中氯胺酮及其代谢物去甲氯胺酮的HPLC分析   总被引:5,自引:0,他引:5  
Chen LL  Lia OL  Li WJ  Huang LY  Yan YY  Yang L  Ma XN  He R 《法医学杂志》2008,24(1):38-42
目的 建立血液、尿液中氯胺酮及其代谢物去甲氯胺酮的高效液相色谱(HPLC)分析方法.方法 以非那西丁为内标,检材加入10%的氢氧化钠溶液调节pH值为14,用甲苯提取,离心后取有机层,水浴下吹干,乙腈定容后进HPLC仪分析.结果 检测血液中氯胺酮和去甲氯胺酮的线性范围均是0.05~10μg/mL(r2>0.999 3),检测尿液中氯胺酮和去甲氯胺酮的线性范围均是0.01~50 μg/mL(r2>0.999 5).氯胺酮和去甲氯胺酮在血液和尿液中的检测限分别是0.006 μg/mL和0.003 μg/mL.血液和尿液中氯胺酮和去甲氯胺酮的回收率不低于82.4%.检测血液和尿液中氯胺酮和去甲氯胺酮的日内精密度和日间精密度均小于10.0%.将所建的方法应用于给大鼠氯胺酮后的血液和尿液中的氯胺酮和去甲氯胺酮的测定,得到了氯胺酮和去甲氯胺酮在大鼠的药时曲线和尿排药速率曲线. 结论本方法简便、快捷,适用于血液、尿液中氯胺酮及其代谢物去甲氯胺酮的分析.  相似文献   

3.
目的研究家兔尿液中氯胺酮及代谢物去甲氯胺酮浓度与血药浓度的动态相关性。方法实验家兔分为氯胺酮灌胃组、静脉注射组和对照组,分别于染毒前和染毒后不同时间点收集尿液和血液。气相色谱/质谱联用(GC/MS)全扫描定性、气相色谱(GC)定量分析血液和尿液样品中氯胺酮及去甲氯胺酮的浓度。采用双变量Pearson相关分析研究尿液中药物浓度和血药浓度的相关性。结果氯胺酮灌胃组和静脉注射组给药后各时间点氯胺酮及去甲氯胺酮在尿液和血液中的浓度相关系数范围在0.11~0.69之间。结论氯胺酮及去甲氯胺酮在尿液和血液中的浓度相关性较差,尿液药物浓度并不能直接反映血药浓度,因此用尿液中氯胺酮浓度推断血药浓度时应慎重考虑。  相似文献   

4.
尿中氯胺酮及其代谢物盘鉴和GC/MS/SIM测定   总被引:10,自引:0,他引:10  
目的 研究尿中氯胺酮(KET)及其代谢物去甲基氯胺酮(NKET)的盘鉴(Disk SPE)。方法 用含有化学键合C18和强酸型强阳离子交换(SCX)基团的萃取柱SPEC.C18 AR/MP3萃取,加入萃取柱前的尿样用0.1mol/L磷酸盐缓冲溶液(pH 6)稀释,洗脱溶剂为含2%(v/v)氨水的乙酸乙酯;以2,4,6-三硝基甲苯(TNT)为色谱内标,GC/MS/SIM检测。结果 在加标量为0.5μg/mL、2μg/mL和6μg/mL的控制尿样中,KET和NKET的平均回收率分别为91.5%和79.9%,6次测定的RSD均为8.7%;线性范围0.02-8μg/mL,线性相关系数分别为0.9819和0.9964;检出限(S/N=3)分别为6ng/mL和4ng/mL;总离子色谱图背景低,杂质少。同一根萃取柱重复使用8次以上未见性能下降;嫌疑尿样中检出KET和/或NKET,和常规的液液萃取结果相符。结论 该方法适用于尿中KET和NKET的同时测定。  相似文献   

5.
An effective way to reveal the history of drug abuse is to determine the parental drug and its metabolites in hair. Here, a quantitative HPLC-Chip-MS/MS method was developed for simultaneous measurement of ketamine and its metabolite norketamine in human hair. Ketamine and norketamine were extracted from hair by acid hydrolysis, and then enriched by organic solvent extraction. The chromatographic separation was achieved in 15 min, with the drug identification and quantification by a tandem mass spectrometer. The linear regression analysis was calibrated by deuterated internal standards with a R(2) of over 0.996. The limit of detection (LOD) and the limit of quantification (LOQ) for ketamine and norketamine were 0.5 and 1 pg/mg of hair, respectively. The standard curves were linear from the value of LOQ up to 100 pg/mg of hair. The validation parameters including selectivity, accuracy, precision, stability and matrix effect were also determined. In conclusion, this method was able to reveal the present of ketamine and norketamine with less hair from the drug abusers, and which had the sensitivity of ~1000-fold higher than the conventional method. In addition, the amount of ketamine and norketamine being detected in different hair segments would be useful in revealing the historical record of ketamine uptake in the drug abusers.  相似文献   

6.
Da Q  Liu W  Shen BH  Shen M 《法医学杂志》2010,26(6):432-435
目的建立血液、尿液以及肝中河豚毒素(tetrodotoxin,TTX)的液相色谱-串联质谱分析方法,并进行方法学验证。方法血液、尿液和肝用1%乙酸甲醇溶液去蛋白后,上清液用固相萃取法净化,LC-MS/MS检测。结果血液、尿液和肝中TTX检出限分别为2ng/mL、2ng/mL和4ng/g。血液和尿液在4~100ng/mL、肝在5~100ng/g的范围内线性关系良好,相关系数r≥0.9973;日内精密度和日间精密度均在12.80%以内;回收率大于47.2%。结论所建方法高效、灵敏、准确,可以为河豚毒素中毒的法医学鉴定、临床诊治以及食品安全的监控提供技术保障。  相似文献   

7.
LC-MS/MS测定尿液中可卡因及其代谢物苯甲酰爱康宁   总被引:4,自引:0,他引:4  
Sun QR  Xiang P  Yan H  Shen M 《法医学杂志》2008,24(4):268-272
目的建立尿液中可卡因(cocaine,COC)及其代谢物苯甲酰爱康宁(benzoylecgonine,BZE)的液相色谱-串联质谱分析方法。方法尿液经固相萃取后,用AllurePFP丙基柱分离,以V(甲醇):V(20mmol/L乙酸胺和0.1%甲酸的缓冲溶液)=80∶20为流动相,采用二级质谱多反应监测模式检测COC和BZE。按10mg/kg的剂量对豚鼠腹腔注射可卡因,给药后收集7d尿液。结果尿液中COC和BZE在2.0~100ng/mL质量浓度范围内线性关系良好(r=0.9995),最低检测限(LOD)为0.5ng/mL;回收率大于90%;日内和日间精密度均小于6%;豚鼠尿液中主要检测目标物是BZE,且BZE检测时限也较COC长。结论所建方法灵敏度高,选择性好,适用于尿液中可卡因和苯甲酰爱康宁的检测。  相似文献   

8.
Superwarfarin poisoning is a growing health problem. A sensitive and reproducible LC-ESI/MS/MS (liquid chromatography electrospray ionization tandem mass spectrometry) method was developed and validated for the determination of bromadiolone and brodifacoum, the most commonly used superwarfarins, in human blood using warfarin-D5 as an internal standard. Bromadiolone and brodifacoum were extracted from whole blood samples by liquid-liquid extraction with ethyl acetate. Multiple-reaction monitoring (MRM) was used to detect bromadiolone and brodifacoum using precursor→product ion combinations of m/z 525→250 and 521→135, respectively. The calibration curves were linear (r(2)=0.9999) in the concentration range of 0.5-100.0ng/mL for bromadiolone and brodifacoum, with a lower limit of detection of 0.1 and 0.2ng/mL, respectively, in whole blood. This method detected trace levels of bromadiolone and brodifacoum in whole blood samples and can be used in the diagnosis of poisoned human beings.  相似文献   

9.
目的本文对兽药"舒泰"中有效成分进行了结构确证,并建立了生物检材中替来他明和唑拉西泮的快速检验方法。方法在血液和尿液的生物检材中,通过加标实验,经QuEChERS萃取后,进行LC/MS对替来他明和唑拉西泮的定性定量检测分析。结果在血液和尿液的生物样品的加标实验中,替来他明的RSD%在0.5%~3.5%,唑拉西泮的RSD在0.5%~1.1%;替来他明的回收率在75.8%~100.3%,唑拉西泮的回收率在68.8%~76.6%,其中血液中替来他明的方法检出限为0.16ng/mL,尿液中为0.20ng/mL,唑拉西泮在血液中的方法检出限0.17ng/mL,尿液中为0.22ng/mL。结论建立的QuEChERS萃取方法,操作流程简便,方法重现性好,只需100μL取样量,更适合于痕量生物检材中替来他明和唑拉西泮的检验分析。  相似文献   

10.
A fast method was designed for the simultaneous determination of amphetamine (A), methamphetamine (MA), PMA, MDA, MDMA, MDEA and MBDB in urine. The drugs were analysed by LC (ESI)-MS/MS, after a simple liquid-liquid extraction in the presence of the deuterated analogues. Reverse phase separation on an Atlantis dC18 Intelligent Speed column was achieved in less than 4 min under gradient conditions, and the total run time was 8 min. The method was fully validated, including linearity (1-1000 ng/mL for A, MDMA, MDEA and MBDB; 2-1000 ng/mL for MDA and PMA; 1-200 ng/mL for MA; r2>0.99 for all compounds), recovery (>80%), within-day and between-day precision and accuracy (CV and MRE<12.7% for intermediate level and ULOQ, and <17.2% for LLOQ), limit of detection (0.2 ng/mL for MDMA, MDEA and MBDB; 0.5 ng/mL for A, MA and PMA; 1 ng/mL for MDA) and quantitation (1 ng/mL for A, MA, MDMA, MDEA and MBDB; 2 ng/mL for MDA and PMA) and relative ion intensities. No matrix effect was observed. The procedure proved to be sensitive, specific and rapid, and was applied to real forensic cases.  相似文献   

11.
Ketamine (KT) is widely abused for hallucination and also misused as a "date-rape" drug in recent years. An analytical method using positive ion chemical ionization-gas chromatography-mass spectrometry (PCI-GC-MS) with an automatic solid-phase extraction (SPE) apparatus was studied for the determination of KT and its major metabolite, norketamine (NK), in urine. Six ketamine suspected urine samples were provided by the police. For the research of KT metabolism, KT was administered to SD rats by i.p. at a single dose of 5, 10 and 20mg/kg, respectively, and urine samples were collected 24, 48 and 72 h after administration. For the detection of KT and NK, urine samples were extracted on an automatic SPE apparatus (RapidTrace, Zymark) with mixed mode type cartridge, Drug-Clean (200 mg, Alltech). The identification of KT and NK was by PCI-GC-MS. m/z238 (M+1), 220 for KT, m/z 224 (M+1), 207 for NK and m/z307 (M+1) for Cocaine-D(3) as internal standard were extracted from the full-scan mass spectrum and the underlined ions were used for quantitation. Extracted calibration curves were linear from 50 to 1000 ng/mL for KT and NK with correlation coefficients exceeding 0.99. The limit of detection (LOD) was 25 ng/mL for KT and NK. The limit of quantitation (LOQ) was 50 ng/mL for KT and NK. The recoveries of KT and NK at three different concentrations (86, 430 and 860 ng/mL) were 53.1 to 79.7% and 45.7 to 83.0%, respectively. The intra- and inter-day run precisions (CV) for KT and NK were less than 15.0%, and the accuracies (bias) for KT and NK were also less than 15% at the three different concentration levels (86, 430 and 860 ng/mL). The analytical method was also applied to real six KT suspected urine specimens and KT administered rat urines, and the concentrations of KT and NK were determined. Dehydronorketamine (DHNK) was also confirmed in these urine samples, however the concentration of DHNK was not calculated. SPE is simple, and needs less organic solvent than liquid-liquid extraction (LLE), and PCI-GC-MS can offer both qualitative and quantitative information for urinalysis of KT in forensic analysis.  相似文献   

12.
目的建立尿液中15种常见安眠镇静药物及代谢物的液相色谱-串联质谱分析方法。方法尿液经酶水解、固相萃取后,用C18液相柱分离,以含甲酸铵和甲酸的水、乙腈为流动相梯度洗脱,质谱采用电喷雾电离(ESI)-正负离子模式同时扫描,采用二级质谱多反应监测(MRM)模式检测目标化合物。结果以化合物的保留时间、两对母离子/子离子对定性,尿中常见安眠镇静药物的检测限为0.01~0.5ng/mL(ESI+)和10ng/mL(ESI-);相关系数r在0.994以上;日内及日间精密度均在18%以下;绝对回收率在64.80%~116.20%之间。结论方法快速、灵敏、简便、可靠,能同时分析尿液中的15种安眠镇静药物及其代谢物。  相似文献   

13.
生物检材中氯胺酮及其代谢物的检测   总被引:4,自引:0,他引:4  
Chen LL  Liao LC  Wang ZL 《法医学杂志》2005,21(2):i005-i007
近年来氯胺酮的滥用越来越普遍,建立快速、准确的检测方法越来越重要。氯胺酮在生物体内的代谢物主要有去甲氯胺酮、脱氢去甲氯胺酮等。目前,常用的生物检材有血液、尿液、毛发等。常用的检测方法有气相色谱法、气相色谱-质谱联用法、高效液相色谱法、液相色谱-质谱联用法、高效毛细管电泳法等。本文参考近年来的相关文献对生物检材中氯胺酮及其代谢物的检测方法作一综述,为法医毒物分析等相关领域提供参考。  相似文献   

14.
UPLC-MS/MS检测人血中18种有机磷及氨基甲酸酯类农药   总被引:2,自引:2,他引:0  
目的建立人血中18种有机磷及氨基甲酸酯类农药超高压液相色谱-串联质谱(UPLC-MS/MS)的检测方法。方法血液中加入乙腈沉淀蛋白,采用Waters BEH C18(1.7μm 2.1×50mm)柱子,流动相为5mmol/L乙酸铵水-甲醇,流速:0.3m L/min;进样量:2μL,电喷雾离子源(ESI),正离子检测,采用多反应监测方式进行定量分析。结果药物最小检测限(LOD)在0.1~40ng/m L之间,定量限(LOQ)在0.5~50ng/m L之间,各药物浓度在定量限到500ng/m L范围内线性良好,回收率均在64.3%~111.9%之间,相对标准偏差为3.9%~10.3%。结论该方法专属性强、灵敏、准确,可以适用于法庭与临床毒物分析。  相似文献   

15.
目的应用固相微萃取与气相色谱-质谱联用技术分析尿液中的氯胺酮。方法对影响SPME萃取效果的萃取头类型、萃取时间、解析时间、离子强度等因素条件进行优化,分析尿中氯胺酮。结果在0.5~2.5μg/m l范围内线性关系良好,线性相关系数为0.995 6;最小检出限为2.5μg/L。结论该方法具有预处理简单、分析速度快、灵敏度高等优点,适合实际案件尿样的检验。  相似文献   

16.
A rapid and sensitive LC/MS method was developed for the simultaneous analysis of N,N-dimethylamphetamine (DMA), N,N-dimethylamphetamine N-oxide (DMANO), methylamphetamine (MA) and amphetamine (A) in urine samples. Employing an Alltech C18 column for solid phase extraction followed by LC/MS analysis using an Alltech Platinum EPS C18 column with a mixture of ammonium formate (0.01 M, pH 3) and acetonitrile (77:23, v/v) as mobile phase at a flow rate of 0.2 mL/min, simultaneous identification and quantitation of A, MA, DMA and DMANO in urine can be achieved using a 5-min chromatographic run. The calibration ranges were 0.10-3.0 micro g/mL for DMANO, 0.05-3.0 micro g/mL for DMA and 0.05-5.0 micro g/mL for both MA and A. The intra-, inter-day precision and accuracy for all analytes, spiked at three different concentrations in quality control samples, were in the ranges of 1.7-8.6, 4.1-10.0, -11.6 to 12.9%, respectively. The newly developed method was applied to the analysis of urine samples obtained from 118 suspected MA/DMA abusers, with the presence of MA confirmed in their urine samples under the drug-use surveillance program. Of these 118 samples, 43 were found to contain DMANO and 11 with both DMANO and DMA.  相似文献   

17.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C(18) 5 microm, 2.1 mm x 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 degrees C in NaOH 1M before liquid-liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1-50 ng/mL in blood and urine; in the range 5-500 pg/mg for MA, MDMA, MDEA and MBDB, and 20-500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T+12h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D+8) and scalp hair at day 60 (D+60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

18.
目的建立全血中佐匹克隆、唑吡坦和扎来普隆的液相色谱一四级杆飞行时间串联质谱联用同时检测方法。方法采用液液萃取进行提取,提取物以ZorbaxEclipsePlusC18(2.1×50mm,1.8fire)色谱柱分离,以10mmol/L甲酸铵(含0.1%甲酸)一乙腈为流动相梯度洗脱,流速为0.2mL/min,四级杆一飞行时间串联质谱检测。结果全血中佐匹克隆和扎来普隆的线性范围为10ng/mL-500ng/mL,检出限为3ng/mL唑吡坦的线性范围为3ng/mL-300ng/mL,检出限为lng/mL。结论本方法准确、快速、灵敏,可用于全血中佐匹克隆、唑吡坦和扎来普隆的同时定性、定量检测。  相似文献   

19.
目的建立了一种高效液相色谱串联三重四极杆质谱同时测定体液中赛拉嗪及2,6-二甲基苯胺的分析方法。方法样品经HLB固相萃取柱提取净化,Waters Atlantis d C18色谱柱分离,正电离条件下进行选择监视扫描模式检测。结果方法的回收率为70.5%~79.8%,RSD为8.2%~10.5%。赛拉嗪及2,6-二甲基苯胺在血液和尿液中的检出限分别为0.4 ng/mL和0.3 ng/mL,定量限分别为1.2 ng/mL和1.0 ng/mL。结论本方法灵敏度高、特异性好、重现性好,适用于赛拉嗪中毒的血液和尿液检测。  相似文献   

20.
A reversed phase gradient ultra performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS) method has been developed for the analysis of smokeless powders. A total of 20 different components were separated by UPLC and detected by MS/MS in multiple reaction monitoring (MRM) mode. These compounds included diphenylamines, centralites, nitrotoluenes, nitroglycerin, and various phthalates. Simultaneous positive and negative electrospray ionization (ESI) was used along with negative atmospheric pressure chemical ionization (APCI) to detect all compounds in a single analysis. Analysis times were under 8 min with a gradient of 10–73% organic at a flow rate of 0.500 mL/min. With this method, ultraviolet and MRM limits of detection ranging from 0.08 to 2.6 ng and 0.4–64 ng injected were achieved. Commercially available smokeless powders were also extracted with methylene chloride and characterized using the developed UPLC/MS/MS method. The procedure permits the determination of compositional differences between different brands as well as lot‐to‐lot variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号