首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的建立人体全血中五氟利多浓度的液相色谱-质谱联用法(LC-MS/MS)分析方法。方法全血中五氟利多和利培酮(内标)经正己烷液-液提取后,采用Capcell Pak C18色谱柱(250mm×2.0mm5,μm)进行分离,流动相为乙腈:20mmol/L乙酸胺和0.1%甲酸溶液(75∶25,V/V),流速为0.2mL/min,然后以MS/MS电喷雾正电离的多反应监测扫描方式(MRM)测定。用于定量分析的离子为m/z 524→109(五氟利多)和m/z 411→191(内标)。结果五氟利多的最低检测限为0.2ng/mL,在0.4~400ng/mL浓度范围内线性良好(r=0.9994),低、中、高浓度(1ng/mL、10ng/mL、100ng/mL)准确度分别为97%,108%和95%,日内和日间RSD均小于15%。结论该方法简便、快速、灵敏,适用于全血中五氟利多浓度的测定。  相似文献   

2.
LC-MS/MS法测定人血浆中盐酸洛哌丁胺   总被引:1,自引:0,他引:1  
目的建立人血浆中盐酸洛哌丁胺的液相色谱-质谱联用测定法(LC-MS/MS)。方法血浆样品中盐酸洛哌丁胺与盐酸小檗碱(内标)经甲醇液.液提取后,采用ZORBAXSB—C18色谱柱(2.1mm×150mm×5μm),柱温35℃,流动相为乙腈:0.1%甲酸(60:40,V/V),流速为0.4mL/min,进样量10μL。电喷雾离子源(ESI),正离子检测,以多反应监测(MRM)方式进行定量分析,用于监测的离子为m/z477→266(盐酸洛哌丁胺)和m/z366→292(内标)。结果盐酸洛哌丁胺的检测下限为0.2ng/mL(S/N=3),在浓度0.5~500ng/mL范围内线性良好(r=0.9982),低、中、高浓度(1ng/mL、20ng/mL、400ng/mL)的平均回收率分别为84.6%,88.5%和90.2%,日内与日问RSD分别小于6%与7%。结论LC—MS/MS法可用于盐酸洛哌丁胺的定性定量分析。  相似文献   

3.
Superwarfarin poisoning is a growing health problem. A sensitive and reproducible LC-ESI/MS/MS (liquid chromatography electrospray ionization tandem mass spectrometry) method was developed and validated for the determination of bromadiolone and brodifacoum, the most commonly used superwarfarins, in human blood using warfarin-D5 as an internal standard. Bromadiolone and brodifacoum were extracted from whole blood samples by liquid-liquid extraction with ethyl acetate. Multiple-reaction monitoring (MRM) was used to detect bromadiolone and brodifacoum using precursor→product ion combinations of m/z 525→250 and 521→135, respectively. The calibration curves were linear (r(2)=0.9999) in the concentration range of 0.5-100.0ng/mL for bromadiolone and brodifacoum, with a lower limit of detection of 0.1 and 0.2ng/mL, respectively, in whole blood. This method detected trace levels of bromadiolone and brodifacoum in whole blood samples and can be used in the diagnosis of poisoned human beings.  相似文献   

4.
A rapid, sensitive and selective high-performance liquid chromatography tandem mass spectrometric method (HPLC/MS-MS) has been developed and validated for the determination of bromadiolone in whole blood using warfarin as an internal standard (IS). Bromadiolone was extracted from the whole blood samples by liquid-liquid extraction with ethyl acetate. Multiple-reaction monitoring (MRM) was used to detect bromadiolone and IS, using precursor --> product ion combinations at m/z 527 --> 465 and 307 --> 161, respectively. The calibration curve was linear (r2=0.998) in the concentration range of 0.5-100.0 ng/mL with a lower limit of quantification of 0.5 ng/mL in whole blood. Intra- and inter-day relative standard deviations (R.S.D.s) were less than 7.5 and 11.9%, respectively. Recoveries of bromadiolone ranged from 82.1 to 85.2%. This method is found to be determined trace bromadiolone in whole blood and can be used in the diagnosis of the poisoned human beings.  相似文献   

5.
Ketamine (KT) is widely abused for hallucination and also misused as a "date-rape" drug in recent years. An analytical method using positive ion chemical ionization-gas chromatography-mass spectrometry (PCI-GC-MS) with an automatic solid-phase extraction (SPE) apparatus was studied for the determination of KT and its major metabolite, norketamine (NK), in urine. Six ketamine suspected urine samples were provided by the police. For the research of KT metabolism, KT was administered to SD rats by i.p. at a single dose of 5, 10 and 20mg/kg, respectively, and urine samples were collected 24, 48 and 72 h after administration. For the detection of KT and NK, urine samples were extracted on an automatic SPE apparatus (RapidTrace, Zymark) with mixed mode type cartridge, Drug-Clean (200 mg, Alltech). The identification of KT and NK was by PCI-GC-MS. m/z238 (M+1), 220 for KT, m/z 224 (M+1), 207 for NK and m/z307 (M+1) for Cocaine-D(3) as internal standard were extracted from the full-scan mass spectrum and the underlined ions were used for quantitation. Extracted calibration curves were linear from 50 to 1000 ng/mL for KT and NK with correlation coefficients exceeding 0.99. The limit of detection (LOD) was 25 ng/mL for KT and NK. The limit of quantitation (LOQ) was 50 ng/mL for KT and NK. The recoveries of KT and NK at three different concentrations (86, 430 and 860 ng/mL) were 53.1 to 79.7% and 45.7 to 83.0%, respectively. The intra- and inter-day run precisions (CV) for KT and NK were less than 15.0%, and the accuracies (bias) for KT and NK were also less than 15% at the three different concentration levels (86, 430 and 860 ng/mL). The analytical method was also applied to real six KT suspected urine specimens and KT administered rat urines, and the concentrations of KT and NK were determined. Dehydronorketamine (DHNK) was also confirmed in these urine samples, however the concentration of DHNK was not calculated. SPE is simple, and needs less organic solvent than liquid-liquid extraction (LLE), and PCI-GC-MS can offer both qualitative and quantitative information for urinalysis of KT in forensic analysis.  相似文献   

6.
A fully validated, sensitive and specific method for the extraction and quantification of Delta(9)-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-Delta(9)-THC (THC-COOH) and for the detection of 11-hydroxy-Delta(9)-THC (11-OH THC) in oral fluid, urine and whole blood is presented. Solid-phase extraction and liquid chromatography-mass spectrometry (LC-MS) technique were used, with electrospray ionization. Three ions were monitored for THC and THC-COOH and two for 11-OH THC. The compounds were quantified by selected ion recording of m/z 315.31, 329.18 and 343.16 for THC, 11-OH THC and THC-COOH, respectively, and m/z 318.27 and 346.26 for the deuterated internal standards, THC-d(3) and THC-COOH-d(3), respectively. The method proved to be precise for THC and THC-COOH both in terms of intra-day and inter-day analysis, with intra-day coefficients of variation (CV) less than 6.3, 6.6 and 6.5% for THC in saliva, urine and blood, respectively, and 6.8 and 7.7% for THC-COOH in urine and blood, respectively. Day-to-day CVs were less than 3.5, 4.9 and 11.3% for THC in saliva, urine and blood, respectively, and 6.2 and 6.4% for THC-COOH in urine and blood, respectively. Limits of detection (LOD) were 2 ng/mL for THC in oral fluid and 0.5 ng/mL for THC and THC-COOH and 20 ng/mL for 11-OH THC, in urine and blood. Calibration curves showed a linear relationship for THC and THC-COOH in all samples (r(2)>0.999) within the range investigated. The procedure presented here has high specificity, selectivity and sensitivity. It can be regarded as an alternative method to GC-MS for the confirmation of positive immunoassay test results, and can be used as a suitable analytical tool for the quantification of THC and THC-COOH in oral fluid, urine and/or blood samples.  相似文献   

7.
生物检材中乌头碱的LC-MS/MS快速分析   总被引:1,自引:1,他引:0  
目的应用高效液相色谱-质谱法对生物检材中乌头生物碱等有毒成分进行快速分析。方法取全血样品经乙腈-甲醇(5:1 v/v)提取,使用Agilent Zorbax SB C18(2.1 mm×50 mm,1.8μm)色谱柱,以0.1%甲酸溶液-乙腈(60:40 v/v)为流动相等度洗脱。在多反应监测模式下测定全血样品中乌头生物碱等有毒成分。结果乌头碱、次乌头碱和中乌头碱的保留时间为0.73 min、0.77 min和0.63 min;用于定量分析的离子对分别为m/z 646.4→586.4(乌头碱)、616.1→556.5(次乌头碱)和632.4→572.1(中乌头碱)。乌头碱在0.1~250 ng/m L内线性关系良好,相关系数(r)≥0.9987,最低检出限0.1ng/m L,精密度考查其变异系数(CV)5.42%(n=6),血液中乌头碱提取回收率不小于90%。结论本文建立的高效液相色谱-质谱法快速、简便、灵敏,适用于天然药毒物检验。  相似文献   

8.
Gong FJ  Yan SM  Wu ZP  Zhang RS 《法医学杂志》2011,27(5):350-352
目的建立固相萃取-液相色谱-串联质谱(SPE-LC-MS/MS)分析全血中多塞平的方法。方法以阿米替林为内标,全血样品经固相萃取处理后,通过液相色谱-串联质谱技术进行检测(电喷雾离子源正离子方式,多反应监测模式)。监测离子对m/z多塞平为280→107、280→235、280→220,阿米替林为278→233。多塞平和阿米替林的保留时间分别为15.15min和16.94min。结果全血中多塞平在0.005~1.00μg/mL质量浓度范围内呈线性关系,线性方程为y=3.2047x+0.0339,相关系数(r)=0.9996,检出限为0.001μg/mL;平均提取回收率为78.0%~82.9%,日内精密度〈2.55%,日间精密度〈5.90%。结论本方法快速简便、灵敏、重现性好,适用于全血中多塞平的检测。  相似文献   

9.
A case is presented of a death caused by self-injection of sufentanil and midazolam. Biological fluids and tissues were analyzed for midazolam by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS) and for sufentanil by GC/MS. Midazolam was extracted from basified fluids or tissues homogenated with n-butyl chloride and analyzed by HPLC by using a phosphate buffer: acetonitrile (60:40) mobile phase on a mu-Bondapak C18 column at 240 nm. Sufentanil was extracted from basified fluids and tissue homogenates with hexane:ethanol (19:1). GC/MS methodology for both compounds consisted of chromatographic separation on a 15-m by 0.25-mm inside diameter (ID) DB-5 (1.0-micron-thick film) bonded phase fused silica capillary column with helium carrier (29 cm/s) splitless injection at 260 degrees C; column 200 degrees C (0.8 min) 10 degrees C/min to 270 degrees C; and electron ionization and multiple ion detection for midazolam (m/z 310), methaqualone (IS, m/z 235), sufentanil (m/z 289), and fentanyl (IS, m/z 245). Sufentanil concentrations were: blood 1.1 ng/mL, urine 1.3 ng/mL, vitreous humor 1.2 ng/mL, liver 1.75 ng/g, and kidney 5.5 ng/g. Midazolam concentrations were: blood 50 ng/mL, urine 300 ng/mL, liver 930 ng/g, and kidney 290 ng/g. Cause of death was attributed to an acute sufentanil/midazolam intoxication and manner of death a suicide.  相似文献   

10.
超高效液相色谱-质谱法分析人全血中的氯化琥珀胆碱   总被引:2,自引:2,他引:0  
目的建立超高效液相色谱串联质谱法(UPLC-MS/MS)测定氯化琥珀胆碱的方法。方法空白血中加入氯化琥珀胆碱标准溶液,经pH8氨水稀释后,涡旋离心,上清液过混合型弱阳离子交换柱(WCX)进行纯化,采用UPLCMS/MS检测。质谱检测采用正离子扫描,多反应离子监测模式(MRM)。以氯化琥珀胆碱母离子145.1(m/z)和子离子93.6及115.6(m/z)定性、定量。结果全血中氯化琥珀胆碱的回收率在75%~87%,日内和日间RSD均小于15%,最小检出限为0.01ng/mL。结论应用该方法对多起实际案例进行了检验,证明该方法快速、简便、灵敏,适用于氯化琥珀胆碱中毒的毒物学检验。  相似文献   

11.
An analytical method using solid-phase extraction (SPE) and high-performance liquid chromatography-mass spectrometry (LC-MS) has been developed and validated for the confirmation of Delta(9)-tetrahydrocannabinol (THC) in oral fluid samples. Oral fluid was extracted using Bond Elut LRC-Certify solid-phase extraction columns (10 cm(3), 300 mg) and elution performed with n-hexane/ethyl acetate. Quantitation made use of the selected ion-recording mode (SIR) using the most abundant characteristic ion [THC+H(+)], m/z 315.31 and the fragment ion, m/z 193.13 for confirmation, and m/z 318.00 for the protonated internal standard, [d(3)-THC+H(+)]. The method proved to be precise for THC, in terms of both intra-day and inter-day analyses, with coefficients of variation less than 10%, and the calculated extraction efficiencies for THC ranged from 76 to 83%. Calibration standards spiked with THC between 2 and 100 ng/mL showed a linear relationship (r(2)=0.999). The method presented was applied to the oral fluid samples taken from the volunteers during the largest music event in Portugal, named Rock in Rio-Lisboa. Oral fluid was collected from 40 persons by expectoration and with Salivette. In 55% of the samples obtained by expectorating, THC was detected with concentration ranges from 1033 to 6552 ng/mL and in 45% of cases THC was detected at concentrations between 51 and 937 ng/mL. However, using Salivette collection, 26 of the 40 cases had an undetectable THC.  相似文献   

12.
GC法检测血液和尿液中甲基苯丙胺和咖啡因   总被引:1,自引:1,他引:0  
目的建立同时测定血、尿中甲基苯丙胺和咖啡因含量的方法。方法应用GC/NPD技术,以4-苯基丁胺为内标,直接碱化,用氯仿提取,三氟乙酸酐衍生化,8CB熔融石英毛细管柱(30m×0.25mm×0.25μm)分析。结果生物样品中甲基苯丙胺与咖啡因在0.012—7.5μg/mL浓度范围内线性关系良好,检测限(S/N=3)依次为1.2ng/mL,0.6ng/mL(血);1.6ng/mL,0.8ng/mL(尿)。苯丙胺在0.017—10.0μg/mL浓度范围内线性关系良好,检测限为1.6mg/mL(血),3.2ng/mL(尿)。所有样本回收率均大于85%。结论本方法准确、灵敏,适用于血、尿中甲基苯丙胺及其代谢物苯丙胺的三氟乙酸酐衍生化物和咖啡因的同时检测,为判定滥用毒品种类、追查毒品来源以及研究生物体内甲基苯丙胺和咖啡因的交互影响提供了检测手段。  相似文献   

13.
HPLC-MS/MS法检测血液中甲卡西酮及其代谢物   总被引:1,自引:1,他引:0  
目的建立同时检测血液中新精神活性物质甲卡西酮及其代谢物卡西酮、麻黄碱和伪麻黄碱含量的高效液相色谱-串联质谱方法,验证甲卡西酮在大鼠体内的代谢物。方法血液样品中加入内标物甲卡西酮-D3,经甲醇提取后采用InfinityLab Poroshell 120 Chiral-V型色谱柱分离,以甲醇和乙腈混合流动相恒比洗脱,采用电喷雾离子源多反应监测模式,检测腹腔注射染毒大鼠血液中甲卡西酮及其代谢物。结果血中甲卡西酮及其代谢物10~1000ng/mL浓度范围内线性关系良好(r>0.999),检出限均小于2ng/mL,定量限为10ng/mL,方法准确度为87.06%~112.62%,批间及批内精密度均小于15%;腹腔注射染毒大鼠血中检出甲卡西酮、卡西酮、麻黄碱和伪麻黄碱。结论本研究建立了血液中甲卡西酮及其代谢物的HPLC-MS/MS定性、定量检测方法,初步验证卡西酮、麻黄碱和伪麻黄碱为甲卡西酮的代谢物。  相似文献   

14.
Dextromethorphan (DMP), an antitussive, is one of the most popular drugs among the younger generation in Korea. It usually is taken for its hallucinogenic properties and overdoses have been responsible for the fatalities that have been reported frequently. To control the abuse of DMP, the authorities restricted its use through classifying it as a controlled drug on October 2003. The purpose of this study is to provide a standard method for the analysis of DMP and its main metabolite, dextrorphan (DTP) in biological specimens. At first we established a standard operating procedure (SOP) for DMP/DTP in urine, and a method validation was performed. We also quantified DMP from 16 drug abuser's urine samples all of which were positive in the screening test for DMP. For the detection of DMP/DTP, urine samples were adjusted with 6N NaOH (pH 11) and extracted with ethylacetate. Thin layer chromatography was used as the screening test, and the final identification for DMP/DTP was used by GC/MS. The ions (m/z 271 for DMP, m/z 257 for DTP and m/z 86 for lidocaine as internal standard) were extracted from the full scan mass spectrum and were used for quantification. The selectivity, linearity of calibration, accuracy, within- and between day precision, limit of detection and quantification, recovery and stability were examined as parts of the method validation. Extracted calibration curves were linear from 100 to 2000 ng/mL for DMP and DTP with correlation coefficients better than 0.999. Limit detection was 50 ng/mL for DMP and DTP. Within-run precision (%CV) for DMP and DTP at three different concentrations (100, 500 and 1000 ng/mL) was 6.10-18.85%, and between-run precision was 1.70-7.86% for DMP and DTP. Absolute recovery for DMP and DTP was 57-74%, and relative recovery (extraction efficiency) was 80-89%. For 16 drug abuser's urine samples, the concentrations of DMP and DTP were 0.16-52.63 and 0.41-23.75 microg/mL, respectively. Method validation is an important requirement in the practice of chemical analysis, and it will be particularly useful in verifying the reliability of analytical results in the field of forensic science.  相似文献   

15.
LC-MS/MS测定尿液中可卡因及其代谢物苯甲酰爱康宁   总被引:4,自引:0,他引:4  
Sun QR  Xiang P  Yan H  Shen M 《法医学杂志》2008,24(4):268-272
目的建立尿液中可卡因(cocaine,COC)及其代谢物苯甲酰爱康宁(benzoylecgonine,BZE)的液相色谱-串联质谱分析方法。方法尿液经固相萃取后,用AllurePFP丙基柱分离,以V(甲醇):V(20mmol/L乙酸胺和0.1%甲酸的缓冲溶液)=80∶20为流动相,采用二级质谱多反应监测模式检测COC和BZE。按10mg/kg的剂量对豚鼠腹腔注射可卡因,给药后收集7d尿液。结果尿液中COC和BZE在2.0~100ng/mL质量浓度范围内线性关系良好(r=0.9995),最低检测限(LOD)为0.5ng/mL;回收率大于90%;日内和日间精密度均小于6%;豚鼠尿液中主要检测目标物是BZE,且BZE检测时限也较COC长。结论所建方法灵敏度高,选择性好,适用于尿液中可卡因和苯甲酰爱康宁的检测。  相似文献   

16.
The coingestion of cocaine (COC) and ethanol is a very frequent occurrence and is known to increase the risk of morbidity and mortality. The formation occurs of a transesterification product, the cocaethylene (CE), which is even more toxic than cocaine. In order to study the role of ethanol as an agent of interaction in lethal cocaine intoxication, and to establish its influence in post mortem cocaine concentrations, an ion-trap gas chromatographic-mass spectrometric method (GC-MS) was validated to quantify simultaneously the agent and its biotransformation products, benzoylecgonine (BE), ecgoninemethylester (EME) and the 'biomarker' of the interaction, the CE present in whole blood. Deuterated internal standards were added to 2 ml of post mortem whole blood and extracted in Bond Elut Certify columns. The residues were evaporated and derivatized with N-methyl-N-t-butyldimethylsilyltrifluoroacetamide (MTBSTFA). Detection was performed by electron impact ionization. The monitored ions were m/z 82/85 for EME-tert-butyldimethylsilyl (TBDMS)/EME-d3-TBDMS; m/z 182/185 for COC/COC-d3; m/z 196/199 for CE/CE-d3 and m/z 282/285 for BE-TBDMS/BE-d3-TBDMS. The limits of detection and quantification were found to be 25 ng and 50 ng ml(-1), respectively, for COC and CE, and 50 and 100 ng ml(-1) for BE and EME. Accuracy was different for each of the compounds, varying from 65 to 98%. The dynamic range of the assay was 50-2000 ng ml(-1).  相似文献   

17.
Da Q  Liu W  Shen BH  Shen M 《法医学杂志》2010,26(6):432-435
目的建立血液、尿液以及肝中河豚毒素(tetrodotoxin,TTX)的液相色谱-串联质谱分析方法,并进行方法学验证。方法血液、尿液和肝用1%乙酸甲醇溶液去蛋白后,上清液用固相萃取法净化,LC-MS/MS检测。结果血液、尿液和肝中TTX检出限分别为2ng/mL、2ng/mL和4ng/g。血液和尿液在4~100ng/mL、肝在5~100ng/g的范围内线性关系良好,相关系数r≥0.9973;日内精密度和日间精密度均在12.80%以内;回收率大于47.2%。结论所建方法高效、灵敏、准确,可以为河豚毒素中毒的法医学鉴定、临床诊治以及食品安全的监控提供技术保障。  相似文献   

18.
UPLC-MS/MS测定全血中的氯丙嗪   总被引:1,自引:0,他引:1  
目的建立全血中氯丙嗪的UPLC-MS/MS分析方法。方法采用乙腈沉淀蛋白,以Waters ACQUITY UPLCBEH C18柱(2.1mm×50mm,1.7μm)分离,乙腈-0.1%甲酸水溶液为流动相,梯度洗脱,正离子方式检测,多反应离子监测模式(MRM)。结果血液中氯丙嗪在1~100ng/mL范围内线形关系良好,检出限为0.01ng/mL,回收率为81.81%~89.36%,日内、日间精密度分别为9.3%、12.1%。结论本方法准确、快速,可用于全血中氯丙嗪的定性定量分析。  相似文献   

19.
芬氟拉明和苯丙胺类兴奋剂的固相微萃取   总被引:6,自引:1,他引:5  
用固相微萃取技术从血中提取芬氟拉明、苯丙胺和甲基苯丙胺。在 70℃条件下用 10 0 μm聚二甲基硅氧烷萃取头吸附 15min。重氢甲基苯丙胺作内标 ,采用柱前衍生化的进样方式 ,气质联用仪测定。选择离子m /z2 6 8(芬氟拉明 )、m/z2 40 (苯丙胺 )、m /z2 5 4(甲基苯丙胺 )和m/z2 5 8(重氢甲基苯丙胺 ,内标 )的峰面积比定量。血中检测浓度可达 0 0 1~ 0 0 3μg/g。通过解剖例中芬氟拉明的实际测定 ,证明这是一个从血液中提取分析苯丙胺类衍生物的快速准确的方法  相似文献   

20.
目的建立可用于生物体内甲胺磷及其异构体O,O二甲基氨基硫代磷酸酯检验的高灵敏度方法。方法应用串联质谱法(GCMS/MS),对生物样品中的甲胺磷及其异构体进行检验研究。结果选择质荷比为141的离子为母离子,击发电压为0.8V时,甲胺磷及其异构体二次电离碎片适中,质谱谱图清晰。50%甲胺磷乳油进样量为0.1ng时,甲胺磷及O,O二甲基氨基硫代磷酸酯峰的信噪比分别为436、773。经实验,甲胺磷检测限为20pg。结论所拟方法能有效提高甲胺磷的检测灵敏度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号