首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目的应用Ion Torrent PGM~(TM)测序系统对人线粒体DNA(mitochondria DNA,mtDNA)全序列进行分析检测,研究不同组织间mt DNA序列差异情况。方法通过法医尸体检验采集6名无关个体的组织样本,包括胸腔血液、头发、肋软骨、指甲、骨骼肌和口腔上皮。使用4对引物对线粒体全序列进行扩增,应用Ion Shear~(TM)Plus Reagents试剂盒和Ion Plus Fragment Library试剂盒等构建文库,并在Ion Torrent PGM~(TM)测序系统上进行线粒体基因组全序列测序,并针对异质性位点和在HVⅠ区域突变位点,进行Sanger测序验证。结果所有样本的全基因组mtDNA都扩增成功,6名无关个体分属于6种不同的单倍型,同一个体不同组织之间mtDNA存在异质性差异。异质性位点和HVⅠ区域突变位点采用Sanger测序结果均得到验证。通过Kappa统计方法进行一致性检验后发现,相同个体不同组织的mtDNA序列检验结果仍具有较好的一致性。结论本研究所采用的人线粒体基因组全序列的测序检验方法,可以检测出同一个体不同组织间mtDNA的异质性差异,该差异具有较高的一致性,该结果对mtDNA在法庭科学中的应用具有指导作用。  相似文献   

2.
中国汉族人mtDNA控制区异质性遗传规律   总被引:2,自引:0,他引:2  
Jiang QC  Tong DY  Sun HY  Ou JH  Chen LX  Wu XY 《法医学杂志》2006,22(3):198-203
目的探讨中国汉族人mtDNA控制区异质性分布情况和遗传规律。方法将人mtDNA控制区扩增成6个部分互相重叠的片段,利用已建立的DHPLC技术分析其异质性规律。结果对150例汉族无关个体的多种组织检测,发现异质性个体的发生率达34%(51/150);个体的组织mtDNA异质性检出率最高为脑(50/150)、心肌(48/150)、最低为骨骼(22/150);本组共发现mtDNA控制区异质性位点有36个;同一个体可有多个异质性位点,最多的不超过3个;未发现异质性发生率有性别差异;超过41岁的高年龄组的异质性发生率(27/59)高于低年龄组(24/91);同一个体在2年前后取的血样,异质性检测结果一致;同一母系不同成员的异质性位点相同,但异质性mtDNA的含量有差异。结论DHPLC检测mtDNA控制区异质性具有高分辩力;mtDNA控制区异质性在中国汉族人中广泛存在;上述结果可作为mtDNA控制区多态性作个人认定和亲权鉴定的指导性资料。  相似文献   

3.
人类mtDNA控制区异质性   总被引:1,自引:0,他引:1  
Cao Y  Wan LH  Gu LG  Huang YX  Xiu CX  Hu SH  Mi C 《法医学杂志》2006,22(3):190-192
目的观察mtDNA的点突变异质性和长度异质性。方法运用直接测序法对50名无关个体及16名母系家族成员的血液、口腔上皮细胞、头发的mtDNAHVI、HVII区序列进行分析,并对20例HVI区直接测序失败的无关个体进行克隆后测序分析。结果同一个体的三种检材样本及16名母系家族成员的序列一致,未见异质性存在;同一个体的不同克隆的C延伸区的长度有差异,存在长度异质性。但同一个体的血液和头发具有相似的长度变异类型,即长度异质性在组织间无差异。结论mtDNA碱基序列具有同质性及稳定性,适用于法医学检案。  相似文献   

4.
目的用PCR和ESI-TOF-MS分型技术检测线粒体DNA(mtDNA)D环高变区,通过碱基组成分析mtDNA的异质性。方法从华东汉族群体选取12名无关个体,用PLEX-ID平台进行mtDNA分型。该平台使用12对引物,对mtDNA高变区1(HVⅠ,引物所跨区域为15893~16451)进行碱基组成分析;使用另外12对引物,对mtDNA高变区2(HVⅡ,引物所跨区域为5~603)进行碱基组成分析,考察mtDNA异质性频率。结果 mtDNA多态性区域的碱基组成信息反映出区段内有无异质性。在高变区Ⅰ的12个区段中,有3个区段表现出多聚C长度异质性:在mtDNA高变区Ⅱ(31~576)的12个区段中,有3个区段检见点异质性,另外5个区域检见Poly C长度异质性。结论群体调查表明,mtDNA的序列异质性多见于高变区Ⅱ的103~267区段,多聚C长度异质性多见于高变区Ⅰ的16124~16201、16157~16201、16182~16250区段和高变区Ⅱ的234~367、431~576区段。将mtDNA标记用于母系关系检验和(或)个体识别时,需要格外留意这些异质性信息,以免结论错误。  相似文献   

5.
1 概述 人类mtDNA 1981年在英国剑桥Sanger实验室首次完成全序列测定,这个最初测定的序列(基因库编码:M63933)作为对比的参考序列,通常被称为Anderson序列或剑桥序列[1].线粒体DNA(mitochondrial DNA,mtDNA)为环状DNA,有16569碱基对,含37个编码氧化磷酸化过程相关物质的基因,还有一个复制控制区称为D-环区.该区在个体间呈现多态性,可用于人类个体识别和亲子鉴定.D-环区包括三个高变区(hypervariable region,HV)目前已有人提出高变区Ⅳ的概念,但文献报道较少.无血缘关系个体中mtDNA的HVⅠ和HVⅡ区域变化率大约在1%~3%[2].  相似文献   

6.
目的探讨汉族人不同区段头发线粒体DNA(mtDNA)HVII区的异质性。方法用5%Chelex100法提取7名汉族个体额、顶、枕及左、右颞部等5个不同部位的不同根不同段的头发mtDNA,同时取各自毛囊作为对照;以两步法扩增纯化后测序反应,3100型遗传分析仪检测。结果不同毛干区段的点异质性多发生于女性长发远段、儿童及老年人,不同区及同一根不同段均可发生点异质性,可多达4处,点异质性可能相同,可能不同,但一般多发生于相同个体毛囊mtDNA点突变处。不同区头发长度异质性不同,同一根头发不同段长度异质性相同。mtDNA点异质性有一定遗传倾向。稀释及混合样本mtDNA图谱也可表现为“点异质性”图谱。结论根据人头发毛干mtDNA测序结果得出“排除”结论时一定应慎重。  相似文献   

7.
左素娥  伍新尧 《证据科学》2001,8(4):225-227
一、人类线粒体DNA(mtDNA)序列分析和应用的历史沿革 1981年Anderson完成了人类线粒体基因组的全部核苷酸序列的测定,并提出人类mtDNA呈闭合环状,总长度为16 569bp[1].在此基础上,许多学者致力于分析这一环状小分子DNA,以揭示mtDNA的序列多态性程度.早期主要采用RFLP技术,如Greenberg等[2]、Horai等[3]用RFLP技术对人类mtDNA进行了序列分析,结果显示:人类mtDNA的序列多态性仅局限于长度约为1.1kb的非编码区,称之为D-Loop区,其中包含两个长度各为400bp的高度可变区-HV1和HV2;不同个体的mtDNA存在长度变异和序列变异,结果也提示人类线粒体DNA比核DNA有更高的突变率,为核DNA的5~10倍.甚至某些区域是核DNA的6~17倍.到了90年代,DNA自动测序技术在mtDNA研究上的普及应用,大大促进了研究的发展,不少学者提出人类mtDNA的序列分析可用于法医学个人识别.如Stonking等[4]用SSO杂交技术,Sulivan等[5]和Holland等[6]用直接测序法分别对时间久远(最长达24a)的尸体残骸的mtDNA进行序列分析,并与其可疑母系亲属进行比对,为尸源追踪提供了证据. 国内法医学者也于90年代中期开始了对我国汉族人群的mtDNA D-Loop区的序列进行分析[7,8],并陆续有将mtDNA的序列分析用于法医个人识别的报道,如公安部二所的刘冰等[9]将对脱落毛发的mtDNA嵌套式扩增的方法用于模板量很少的案例的个人识别,获得成功. 二、人类mtDNA序列分析的现状目前对mtDNA序列的分析方法多采用对其PCR产物的自动测序,所用检材包括血液、毛发、皮肤、指甲、骨骼、胎盘等多种组织,仍以Aderson所报道的序列为参考序列.  相似文献   

8.
Liu YC  Hao JP  Yan JG  Tang H  Wang J  Ren H  Ren JC 《法医学杂志》2006,22(1):45-47
目的研究线粒体DNA(mtDNA)编码区单核苷酸多态性,建立mtDNA编码区多态性在法庭科学中应用的理论基础。方法针对mtDNA编码区nt8162-8483以及nt13070-13299两段序列设计引物,应用直接测序技术研究其多态性。结果两对引物扩增片段长分别为322bp和230bp,共检测到21种变异,24种单倍型,基因多样性为0.7511,两个无关个体的偶合概率为0.2564。结论线粒体DNA编码区多态性位点作为线粒体DNA控制区多态性位点的补充,联合应用可以提高线粒体DNA在法医学应用中的个体识别能力。  相似文献   

9.
目的基于变性高效液相色谱技术,建立一种不需测序和杂交的新的mtDNA控制区多态性分析系统。方法mtDNA控制区序列(包括HVⅠ,HVⅡ和HVⅢ)被分为4个扩增片段,采用配对分析突变检测模式进行DHPLC分析。对DHPLC检测条件(包括柱温和洗脱梯度等)进行优化。对100个不同类型差异序列的组合配对以检验该方法的检测效力。结果10组序列相同的样本配对DHPLC图谱均只显示1个样品峰。对序列相差1个碱基~7个碱基、插入(/缺失)1个碱基、插入(/缺失)2个碱基等类型的90个扩增片段组合,用DHPLC进行分析,均得到≥2个样本峰的DHPLC图谱,序列差异检出率达100%。该技术可检测的异质性DNA成分的最小百分含量为10%。结论DHPLC-mtDNA控制区多态性分析系统快速、经济和实用,在检测mtDNA异质性方面较直接测序更灵敏。  相似文献   

10.
目的建立筛选线粒体DNA异质性的DHPLC方法;检测线粒体DNA高变区的异质性频率。方法选取尸体18例,分别提取血、心、肝、脾、肺、肾、胰腺、脑、肌肉、皮肤、肋骨、指甲及毛发的mtDNA,用DHPLC筛选异质型样本,并用直接测序法进行验证。结果9例个体存在异质性,肌肉组织出现的异质性频率最高。结论正确认识线粒体DNA异质性对于法医学应用领域具有指导意义。  相似文献   

11.
线粒体DNA(mtDNA)异质性的存在使其在法医学应用变得复杂。本文对mtDNA异质性形成的可能原因、异质性的分布和遗传特点、异质性的筛查和定量方法、异质性对法医学的影响以及异质性的研究和展望等方面进行综述,探讨异质性在法医学上的应用价值。  相似文献   

12.
中国汉族人群的线粒体DNA控制区多态性研究   总被引:38,自引:9,他引:29  
探讨mtDNA多态性在法庭科学中个体识别的理论基础。应用PCR扩增产物直接测序方法 ,对 111名中国北方地区汉族人群无血缘关系个体的mtDNA控制区 (HVⅠ和HVⅡ )进行测序分析。在高变区Ⅰ 15 998~ 16 40 0之间发现 10 2处碱基变异 ,10 3个mtDNA单倍型 ;在高变区Ⅱ 0 0 0 35~ 0 0 36 9之间的发现 36处碱基变异 ,6 9个mtDNA单倍型。其可变碱基的变异形式主要为碱基替代 (转换和颠换 )、插入和缺失 ;碱基转换 (78 9% )明显高于颠换(14 3% )、插入 (3 4% ) ,缺失 (3 4% )。分析表明 ,人群个体mtDNA控制区碱基序列 ,基因多样性为 99 9% ,两个无关个体的偶合概率为 0 92 % ,具有高度序列的多态性  相似文献   

13.
目的应用HID Ion GeneStudioTM S5测序系统对毛干样本线粒体全基因组分型结果的异质性进行探讨。方法采集8名无关个体的口腔拭子、血液及同一个体不同部位毛干样本,使用Precision ID mtDNA Whole Genome Panel对线粒体全基因组进行扩增,应用HID Ion GeneStudioTM S5测序系统对线粒体全基因组进行分析检测。结果2名个体的颞部毛干样本线粒体DNA出现异质性,其余6名无关个体的口腔拭子、血液及不同部位毛干样本的线粒体全基因组分型结果均一致。8名无关个体共观察到119个碱基变异,个体的变异位点数目分别为29、40、38、35、13、36、40和35。结论应用HID Ion GeneStudioTM S5测序系统可全面了解序列多态性。  相似文献   

14.
mtDNA测序技术在法医检案中的应用   总被引:1,自引:0,他引:1  
<正> 在法医DNA检验中,高度腐败甚至白骨化的尸体,软组织已遭到严重破坏,往往失去核DNA检验应具备的条件。这种情况下,对硬组织,如毛发、骨骼、指甲等进行mtDNA序列分析,并应用于法医个体识别及亲缘认定则具有独特的优势[1]。本文作者对检案中积累的毛发及腐败尸体的骨骼、指甲、血痕等进行mtDNA测序研究,并应用于案件鉴定,取得了满意的效果。  相似文献   

15.
目的建立简单、有效的mtDNA单倍型检测及异质性筛查技术,并获取其相应的汉族人群频率分布。方法用PCR结合变性梯度凝胶电泳(DGGE)技术对200例武汉汉族无关个体外周血mtDNA HVⅡ29~290nt区域进行分型检测。结果200例汉族无关个体中,检出17种单倍型,其单倍型多样性(HD值)为0.8826;有4名个体观察到异质性,其发生率为2%。结论PCR-DGGE是一种简单、灵敏、高效的mtDNA多态性及异质性检测技术,可应用于法医学实践。  相似文献   

16.
应用PCR-测序及SSCP技术分析mtDNA序列多态性   总被引:2,自引:0,他引:2  
<正> mtDNA以其拷贝数多、呈母系遗传、进化速度快等特点,为法医检案提供了一种有效的检测项目,特别是对微量、陈旧降解检材的DNA检验。应用PCR-自动测序和PCR-SSCP检测技术分析58例太原地区无关汉族个体mtDNA nt16081—16546区间(位于HVI)序列多态性,并对其进行统计学分析。  相似文献   

17.
广州地区汉族群体mtDNA HV I区多态性   总被引:1,自引:0,他引:1  
<正> 人类线粒体DNA(mtDNA)是一个闭合的、环状的双链DNA分子,大小为16569 bp,包含一个约1.1 kb长的非编码区(noncoding region)。由于其具较高的复制错误率和较低的修复能力,mtDNA分子,特别是在非编码区具有较高的多态性。mtDNA分子具有母系遗传、高拷贝数(1000~10000个拷贝/细胞)[1]等特点,非编码区的两个高度变异的区域HVRⅠ(hypervariable regionⅠ)和HVRⅡ(hypervari—able regionⅡ)已作为法医学个体识别非常有用的遗  相似文献   

18.
中国朝鲜族线粒体DNA编码区序列多态性   总被引:1,自引:0,他引:1  
目的调查中国朝鲜族群体线粒体DNA(mtDNA)编码区内5个部位 3954~4506nt、5218~5974nt、7942~871Int、10296~10653nt 及14496~14867nt的序列多态性。方法采用PCR产物直接测序方法,对212名中国朝鲜族(吉林省延边地区)无关个体进行序列多态性变化和单倍型分布调查。结果在212名无关个体中,共分出148种单倍型。遗传变异度为0.9931,耦合概率为0.0116。测序结果与Anderson标准序列比较,共检测出109个变异位点,其中79个已收录于MITOMAP。结论mtDNA编码区多态性联合应用可以提高mtDNA的个体识别能力。町为相关遗传学研究提供基础数据资料。  相似文献   

19.
Li CT  Li L  Liu Y 《法医学杂志》2006,22(5):346-348
目的检测不同年龄组人活体血细胞线粒体DNA4977碱基缺失情况及其与年龄的相关性。方法根据Anderson标准序列设计mtDNA恒定区和mtDNA4977特异缺失区引物,采用实时荧光定量PCR技术,对110份不同年龄组人活体血细胞mtDNA4977缺失水平进行检测。结果在23岁以下个体中未检出mtDNA4977缺失,在大于23岁的被检个体中检测到mtDNA4977缺失,年龄越大,越容易检测到缺失。结论人mtDNA4977缺失与年龄有一定的相关性。  相似文献   

20.
目的 对多个样本的线粒体DNA(mtDNA)高变区测序结果与Anderson标准序列进行比对分析。方法 利用ABI测序仪测定生物学样本的mtDNA高变区序列,得到测序结果文件,通过Chromas、 SeqVerter软件将之转换为aln文件,用ClustalX软件与Anderson标准序列(txt文件)进行比对,确定突变点的碱基排列次序和位置。结果Chromas、SeqVerter和ClustalX软件界面友好,操作简便,可以方便地用于多个样本DNA序列的比较,结果直观,易于判读。结论 运用Chromas、SeqVerter和ClustalX等共享软件,可成功地对多个样本的mtDNA高变区序列进行比对分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号